Composites aéronautique soumis au feu : différents méchanismes de dégradation.

E. Schuhler^a, A. Coppalle^a, B. Vieille^b, J. Yon^a, Y. Carpier^b

^a CORIA – UMR 6614 CNRS ^b GPM – UMR 6634 CNRS Université et INSA de Rouen

Sommaire

- Introduction
- Set up presentation
 - Apparatus
 - Temperature and thermal flux
- Results and discussion
 - In-situ measurements
 - After exposure observations
- Conclusions

Introduction Context

→ Inflammation risk due to polymer is a safety issue

Introduction Objectives

→ carbon/thermoset and carbon/thermoplastic materials comparison with high thermal flux : 106kW/m²

Virgin Carbon/Epoxy material

- 2 mm thickness
- Epoxy resin
- [±45]₇ 5-harness satin weave

Virgin Carbon/PPS material

- 2.2 mm thickness
- PPS resin
- [±45]₇ 5-harness satin weave

Introduction Thermal analysis

UNIVERSITE

GPM

TGA under oxidizing (Air) and non-oxidizing (N2) atmosphere

Set up presentation

Coupon size : 2 x 50 x 50 mm

UNIVERSITE

GPM

- Distance between burner exhaust and coupon surface : 17 mm
- Window size of the sample holder : 45 mm diam.
- Flame at the stoichiometry : non-oxidizing flame

Set up presentation

Thermocouple	X position (mm)	Temperature in the flame (°C)
TC1	-14	940
TC2	-7	1074
TC3	0	1110
TC4	7	1078
TC5	14	950

Temperature fluctuation in the flame ($\sigma = 4^{\circ}C$)

flame : goal at 106kW/m²

→ Well-controlled and repeatable heating condition

CORI

Method : Mass measurement

Mass measurement for C/Epoxy samples

Mean residual mass and MLR for C/Epoxy samples

calculation using SawitzkyGolay algorithme for smoothing and first order derivatif calculation.

Residual mass and mass loss rate

Staggs, J.E.J., Fire Safety Journal, 2005.

Method : Temperature measurement

Thermal image from C/Epoxy sample

C/Epoxy sample Temperature

In situ Measurement : Mass loss and temperature

After exposure observations

Observations after a 300 second exposure to the 106kW/m² flame :

After exposure observations

RESERVED IN THE REAL

Température Face arrière (°C) 30s 60s 90s

GPM

Eliot Schuhler, 12 Octobre 2017

After exposure observations

Eliot Schuhler, 12 Octobre 2017

Numeric image analysis : C/PPS

Carbone/PPS vierge 68%_{vol} Fibre

IN REFERENCES

After exposure observations : C/PPS

30s

After exposure observations C/Epoxy

	С/Ероху
Voids	40 %
Matrix	7 %
Fibre	53 %

Conclusion

- 1. The propane burner used for this study is able :
 - to provide easily the fire degradation of a small sample under high thermal flux, up to 200kW/m2.
 - to provide accurate values of mass and temperature during the fire degradation of a small sample.
- 2. The automated image processing allows a quantitative analyse of the sample degradation.
 - The use of a propane/air flame at stoichiometry highlights the impact of a non-oxidizing flame on the fibre degradation at high heat flux.
 - The image analysis enables the characterisation of different degradation processes inside the Epoxy- and PPS-based samples.
 (voids building, major delamination, matrix degradation or melting)

Development and Objectives

1. Study of the composites reaction to fire under high flux (200 kW/m²)

2. Study of the simultaneous mechanical and thermal stress on composite samples.

Merci pour votre attention

Questions ?

