

Development of Flame Retardant Formulation for Cables

Sophie DUQUESNE

Unité Matériaux Et Transformations, UMR CNRS 8207, Ecole Nationale Supérieure de Chimie de Lille, Villeneuve d'Ascq, France

sophie.duquesne@ensc-lille.fr

Cables are a major concern for fire safety in building

- \checkmark 100 m² of office contain 200 kg of cable
- ✓ 48% of residential fires are attributed to electrical distribution systems between 2007-2011 (US) and in 30 % of the cases, a cable/wire was the source of ignition
- Cables can spread fires in particular due to cables tray in building Propagation of the fire through floors and doors
- ✓ Cables are complex

Fire retardancy or fire protection?

ECOLE NATIONAL

Fire retardancy : Euroclass

JMFT

Unité Matériaux Et Transformations

.

R₂Fire

Université de Lille

1 SCIENCES

EN 60332-1-2

Small scale method:

- 1 kW burner
- 0.5 m of cable

EN 50399

Large scale method:

- 20.5 or 30 kW burner
- > 20 m of cable

EN 50399

- Box size : 1 x 2 x 4 m / Specimen = 17*3,5 m long cables
- Burner : 20.5 or 30 kW (different scenario)
- Measure HRR, THR SPR, flame spread,

Fire Growth Rate Index \rightarrow FIGRA = max (HRR/t)

- Main differences with classical tests (cone, etc.):
 - − Based on cables \rightarrow multi component system / complex geometry
 - → More complex larger scale
 - Burner is applied during all the test (20 min)
 - → ≠ than UL-94 test
 - Study of flame spread
 - → \neq than cone experiment
- ightarrow No correlation between classical test and standards

Development of FR Cable : Our approach

2 & 3

1

Development of FR Cable : Our approach

EN 60332-1-2

Small scale method:

- 1 kW burner
- 0.5 m of cable

Development of FR Cable : Our approaches

Development of FR Cable : Our approaches

- Sheathing :
 - 65-75% of the heat released when a cable burns
 - Protect the underlying material

\rightarrow Key component in cable design

Idea of the test:

Study flame spread on a whole cable

Study flame spread on a thin sheathing material

- \rightarrow Avoids cable production
- \rightarrow Lower amount of material for test specimen
- → More suitable screening tool

Small scale test apparatus

Small scale test apparatus

Test protocol

- Collect background for O₂ analyzer <u>without</u> burner (I)
- Collect background for O₂ analyzer <u>with</u> burner (II)
- Application of the burner on the sample (III)
- Measurement of HRR by oxygen depletion and Flame Spread by visual observation (IV)
- After flame out, baseline <u>with</u> burner to check if no drift of the burner power (V)

Repeatability of the measurement

- For a cable classified D_{ca}
 - FS = 100 % (flame spread completely)
 - pHRR = 1,31 kW ± 3,7%
 - FIGRA = 7,22 W/s ± 8,5%
 - THR = 260 kJ ± 5,1%
- Good repeatability of HRR measurement

Flame spread results on benchmark cables

- Selection of 5 different benchmark materials
 - 1 Euroclass D_{ca}
 - 2 Euroclass C_{ca}
 - 2 Euroclass B2_{ca}

Fire classification using the bench scale test follows the same trend as in the EN 50399 apparatus

Flame spread results on benchmark cables

CBL2-MOD2-001 – Euroclass D

Time to ignition	40"
Dripping	2' 15"
Time to reach the clamp	6' 30 ''
Time to flameout	7'

CBL2-MOD2-001 – Euroclass B2

Time to ignition	1' 10"
Time to flameout	1' 50"
Apparition of a white residue	2' 40''
Breaking of the white residue	No

Correlation bench-scale test – EN50399

• Search for possible correlations \rightarrow Plot of test Parameter_{EN50399} vs. Paramater_{small scale}

Euroclass	EN 50399	Small scale test
	Damaged length < 1.5 m	Damaged length < 44.2 %
B2 _{ca}	THR < 15 MJ	THR \leq 63 kJ
	pHRR < 30 kW	pHRR < 0.45 kW
C _{ca}	Damaged length < 2.0 m	Damaged length < 56.5 %
	THR < 30 MJ	THR < 133 kJ
	pHRR < 60 kW	pHRR < 1.25 kW
D _{ca}	-	Damaged length > 56.5 %
	THR < 70 MJ	THR > 133 kJ
	pHRR < 400 kW	pHRR >1.25 kW

Materials screening

Unité Matériaux Et Transformations

Use of Design of Experiments (surface response)

 \rightarrow 10 materials

 \rightarrow Small scale test and cone test for comparison

Sample name	Additive 1	Additive 2	ATH	EVA
CBL1_DOE01_001	0,8	5,0	59,2	35
CBL1_DOE01_002	0,8	10,0	54,2	35
CBL1_DOE01_003	0,8	0,0	64,2	35
CBL1_DOE01_004	0,8	5,0	59,2	35
CBL1_DOE01_005	0,0	5,0	60	35
CBL1_DOE01_006	0,2	1,5	63,3	35
CBL1_DOE01_007	1,3	1,5	62,2	35
CBL1_DOE01_008	0,8	5,0	59,2	35
CBL1_DOE01_009	1,3	8,5	55,2	35
CBL1_DOE01_010	1,5	5,0	58,5	35
CBL1_DOE01_011	0,8	5,0	59,2	35
CBL1_DOE01_012	0,8	5,0	59,2	35
CBL1_DOE01_013	0,2	8,5	56,3	35

Materials screening

Sample name	Predicted EUROCLASS
CBL1_DOE01_001	С
CBL1_DOE01_002	B2
CBL1_DOE01_003	С
CBL1_DOE01_004	1
CBL1_DOE01_005	С
CBL1_DOE01_006	С
CBL1_DOE01_007	D
CBL1_DOE01_008	D
CBL1_DOE01_009	С
CBL1_DOE01_010	B2
CBL1_DOE01_011	1
CBL1_DOE01_012	/
CBL1_DOE01_013	B2

Materials screening

- Cone testing
 - \rightarrow All the formulation behaves similarly
 - \rightarrow No indications about flame spread

- Small scale testing
 - → Differences can be observed

 \rightarrow Validation ?

New materials screening

• Choice of the formulation to be tested at the large scale test

	Small scale test	EN 50399 predicted	EN 50399 experiment	
Damaged length	34.2 ± 6.1 %	0.84-1.06 m	0.66 m	\sim
pHRR	0.43 ± 0.02 kW	28-30 kW	15 kW	
THR	25 ± 8 kJ	4.9-8.4 MJ	6 MJ	
Classification		B2 _{ca}	B2 _{ca}	

Conclusion about small scale testing

- Development of a small scale test based on large scale standard test
 - Possible to evaluate flame spread and HRR parameters
 - Repeatable measurements
 - Down scaling conserve the Euroclass classification
 - Linear correlations were found
- → Helped to develop a new formulation Good prediction of the EN50399 results

\rightarrow Mode of action ?

 \rightarrow Model System EVM/ATH/AlPi

HTT, 250°C,-9.5%

HTT, 350°C,-12%

HTT, 450°C,-27%

HTT, 550°C,-58%

Co-authors :

Bertrand GIRARDIN et Oriane CERIN

Serge BOURBIGOT et Gaëlle FONTAINE

