

# Approche préliminaire pour la modélisation de la pyrolyse dans le code ISIS

G. Boyer, A. Kacem, S. Suard

**IRSN/PSN-RES/SA2I/LIE** 

GDR, Bourges, 29/1/2015

## Outline

- **1** Introduction
- **2** Pyrolysis modelling developped for the ISIS software
- **3** Monophasic modelling validation
- **4** Proposed enhancements
- **5** Conclusion on the pyrolysis modelling strategy



#### Outline

#### **1** Introduction

- **2** Pyrolysis modelling developped for the ISIS software
- **3** Monophasic modelling validation
- **4 Proposed enhancements**
- **5** Conclusion on the pyrolysis modelling strategy



## Reasons for the raise of generalized pyrolysis modellings

#### **Considered fire sources**

□ Liquids

## Reasons for the raise of generalized pyrolysis modellings

#### **Considered fire sources**

- □ Liquids
- □ Homogeneous materials: semi-transparent polymers in Glove Boxes...



Figure : Flaming vertical PMMA flat plate



## Reasons for the raise of generalized pyrolysis modellings

#### **Considered fire sources**

- □ Liquids
- □ Homogeneous materials: semi-transparent polymers in Glove Boxes...
- □ Charring materials in cables...



Figure : Flaming vertical PMMA flat plate



## Reasons for the raise of generalized pyrolysis modellings

#### **Considered fire sources**

- □ Liquids
- □ Homogeneous materials: semi-transparent polymers in Glove Boxes...
- □ Charring materials in cables...
- □ Complex solids...





Figure : Flaming vertical PMMA flat plate

Figure : Cable tray fire



## Pyrolysis modelling: a multiphysic phenomenon

#### Heat transfer

- Conduction, internal radiation, internal convection in porous media
- □ Fluid-solid interface: turbulent surface heat transfer, radiation
- Classic heat conservation laws adapted to multiphasic/heterogeneous flows

#### Mass transfer and volume conservation

- Solid mass loss due to the degradation reactions
- Pyrolysis volatiles generation
- □ Solid volume evolution: erosion, intumescence
- Classic multicomponent mass conservation laws

#### Thermochemistry

- □ Complex solid fire sources to be modeled by multi-species pyrolysis:
- □ Material degradation
  - degradation scenarios
  - ▶ thermokinetic aspects: Arrhenius constants, species concentration dependence
  - Influence of the  $O_2$  concentration
- No theoretical background, empirical approach

## **Consequences on the materials pyrolysis characterization**

#### Engineering approach vs. fundamental chemistry

#### □ Fundamental chemistry:

- molecular description of the materials degradation
- accurate characterization of the thermal, radiative, geometrical materials properties
- Out of reach in CFD

## Consequences on the materials pyrolysis characterization

#### Engineering approach vs. fundamental chemistry

- □ Fundamental chemistry:
  - molecular description of the materials degradation
  - accurate characterization of the thermal, radiative, geometrical materials properties
  - Out of reach in CFD
- □ Applied chemistry

Introduction

- complex, empirical degradation scenarii
- ▶ accurate characterization of the thermal, radiative, geometrical materials properties
- model-free constants, predictive aspects
- exhaustive materials characterizations in nuclear safety out of reach
- Need for complete, accurate models

## Consequences on the materials pyrolysis characterization

#### Engineering approach vs. fundamental chemistry

- □ Fundamental chemistry:
  - molecular description of the materials degradation
  - accurate characterization of the thermal, radiative, geometrical materials properties
  - Out of reach in CFD
- □ Applied chemistry

Introduction

- complex, empirical degradation scenarii
- > accurate characterization of the thermal, radiative, geometrical materials properties
- model-free constants, predictive aspects
- exhaustive materials characterizations in nuclear safety out of reach
- Need for complete, accurate models
- Engineering approach
  - one material  $\leftrightarrow$  one (or a few) reactions
  - available parameters: "robust" values
  - unknown parameters determined by inverse methods
  - Model-dependent constants
  - Constants relevance ? (Ghorbani et al., 2013)
  - Ability to consider partly characterized materials

## **Consequences on the materials pyrolysis characterization**

#### Engineering approach vs. fundamental chemistry

- □ Fundamental chemistry:
  - molecular description of the materials degradation
  - ▶ accurate characterization of the thermal, radiative, geometrical materials properties
  - Out of reach in CFD
- □ Applied chemistry

Introduction

- complex, empirical degradation scenarii
- > accurate characterization of the thermal, radiative, geometrical materials properties
- model-free constants, predictive aspects
- exhaustive materials characterizations in nuclear safety out of reach
- Need for complete, accurate models
- Engineering approach
  - one material  $\leftrightarrow$  one (or a few) reactions
  - available parameters: "robust" values
  - unknown parameters determined by inverse methods
  - Model-dependent constants
  - Constants relevance ? (Ghorbani et al., 2013)
  - Ability to consider partly characterized materials

## Worth enhancing basic pyrolysis modellings and material characterizations for CFD computations ?



## Outline

#### **1** Introduction

#### **2** Pyrolysis modelling developped for the ISIS software

- **3** Monophasic modelling validation
- 4 **Proposed enhancements**
- **5** Conclusion on the pyrolysis modelling strategy



## Pyrolysis modelling: minimal considered phenomena

#### Heat transfer

- □ Conduction, internal radiation, internal convection in porous media
- □ Fluid-solid interface: turbulent surface heat transfer, radiation

#### Mass transfer and volume conservation

- □ Solid mass loss due to the degradation reactions
- Pyrolysis volatiles generation
- □ Solid volume evolution: erosion, intumescence

#### Thermochemistry

- □ Complex sources to be modeled by multi-species pyrolysis:
- □ Material degradation
  - degradation path: comptetitive and sequential reactions
  - thermokinetic aspects: Arrhenius laws with species concentration dependence
  - Influence of the O<sub>2</sub> concentration

## Pyrolysis modelling: minimal considered phenomena

#### Heat transfer

- □ **1D**-Conduction, internal radiation, internal convection in porous media
- □ Fluid-solid interface: simplified convective surface heat transfer, radiation

#### Mass transfer and volume conservation

- □ Solid mass loss due to the degradation reactions
- Pyrolysis volatiles generation
- □ Solid volume evolution: erosion, intumescence ALE method

#### Thermochemistry

- □ Complex sources to be modeled by multi-species pyrolysis:
  - ▶ N<sub>S</sub> materials/solid chemical species
  - $\triangleright$   $N_G$  pyrolysis volatiles
- Material degradation
  - degradation path:  $N_R$  comptetitive and sequential reactions
  - ▶ thermokinetic aspects: Arrhenius laws with species concentration dependence
  - ► Influence of the O<sub>2</sub> concentration

- $\hfill\square$  Test implementation in a separate software
  - ► CFD and pyrolysis are decoupled
  - preliminary tests of various schemes and modellings implementations
  - easy use of optimization techniques for parameters evaluation

- □ Test implementation in a separate software
  - ► CFD and pyrolysis are decoupled
  - preliminary tests of various schemes and modellings implementations
  - easy use of optimization techniques for parameters evaluation
- □ Special care for stability and consistency criteria
  - Pseudo-transport equations writen in conservative form (Kuo, 1986)
  - finite volume space discretization
  - backward Euler implicit time integration

- □ Test implementation in a separate software
  - ► CFD and pyrolysis are decoupled
  - preliminary tests of various schemes and modellings implementations
  - easy use of optimization techniques for parameters evaluation
- □ Special care for stability and consistency criteria
  - Pseudo-transport equations writen in conservative form (Kuo, 1986)
  - finite volume space discretization
  - backward Euler implicit time integration
- $\hfill\square$  Solved equations
  - ▶ Enthalpy conservation; variable: *T* (temperature)
  - Solid mass conservation; variables: solid partial densities  $(\rho_{S,j})$
  - ▶ Volume conservation; variable: solid deformation velocity  $(\mathbf{u}_{e,S})$

- □ Test implementation in a separate software
  - ► CFD and pyrolysis are decoupled
  - preliminary tests of various schemes and modellings implementations
  - easy use of optimization techniques for parameters evaluation
- □ Special care for stability and consistency criteria
  - Pseudo-transport equations writen in conservative form (Kuo, 1986)
  - finite volume space discretization
  - backward Euler implicit time integration
- $\hfill\square$  Solved equations
  - ▶ Enthalpy conservation; variable: *T* (temperature)
  - Solid mass conservation; variables: solid partial densities  $(\rho_{S,j})$
  - ▶ Volume conservation; variable: solid deformation velocity  $(\mathbf{u}_{e,S})$
- □ Considered parameters
  - Arrhénius constants:  $A_{s,j}, E_{a,i}$
  - ▶ reaction orders:  $n_{R,i}$
  - heat of pyrolysis:  $L_i$
  - phasic densities:  $ho^0_{S,j}$
  - Thermal parameters:  $c_{p,S,j}, \lambda_{S,j}, \kappa_{S,j}$  (heat capacities, conduction, radiative absorption)
  - Interface parameters: h (convective heat exchange coefficient),  $\varepsilon$  (surface emissivity)
  - ▶ gas phase parameters:  $\rho_{G,j}$ ,  $c_{p,G,j}$  (partial densities, heat capacities)



- □ Test implementation in a separate software
  - ► CFD and pyrolysis are decoupled
  - preliminary tests of various schemes and modellings implementations
  - easy use of optimization techniques for parameters evaluation
- □ Special care for stability and consistency criteria
  - Pseudo-transport equations writen in conservative form (Kuo, 1986)
  - finite volume space discretization
  - backward Euler implicit time integration
- $\hfill\square$  Solved equations
  - ▶ Enthalpy conservation; variable: *T* (temperature)
  - ▶ Solid mass conservation; variables: solid partial densities  $(\rho_{S,j})$
  - ▶ Volume conservation; variable: solid deformation velocity  $(\mathbf{u}_{e,S})$
  - Gaseous mass conservation  $(
    ho_G, p_G, \mathbf{u}_{e,G})$
  - Gaseous species conservation  $(Y_{G,j})$
- Considered parameters
  - Arrhénius constants:  $A_{s,j}, E_{a,i}$
  - ▶ reaction orders:  $n_{R,i}$
  - heat of pyrolysis:  $L_i$
  - phasic densities:  $\rho^0_{S,j}$
  - Thermal parameters:  $c_{p,S,j}, \lambda_{S,j}, \kappa_{S,j}$  (heat capacities, conduction, radiative absorption)
  - Interface parameters: h (convective heat exchange coefficient),  $\varepsilon$  (surface emissivity)
  - ▶ gas phase parameters:  $\rho_{G,j}$ ,  $c_{p,G,j}$  (partial densities, heat capacities)
  - Porosity parameters :  $\phi$ , K,  $\mu$  (porosity, permeability, viscosity)



## Outline

**1** Introduction

**2** Pyrolysis modelling developped for the ISIS software

#### **3** Monophasic modelling validation

- **4 Proposed enhancements**
- **5** Conclusion on the pyrolysis modelling strategy



□ Comparison to calorimeter cone experiments by Kashiwagi and Ohlemiller, 1982

- non-flaming configurations
- $\blacktriangleright$  imposed radiative heat flux:  $\varphi_{\rm imp}=17~{\rm kW/m^2}$  and  $\varphi_{\rm imp}=40~{\rm kW/m^2}$
- Oxydative and non-oxydative conditions

□ Comparison to calorimeter cone experiments by Kashiwagi and Ohlemiller, 1982

- non-flaming configurations
- imposed radiative heat flux:  $\varphi_{imp} = 17 \text{ kW/m}^2$  and  $\varphi_{imp} = 40 \text{ kW/m}^2$
- Oxydative and non-oxydative conditions

□ Assumed degradation path in non-oxydative conditions:



Comparison to calorimeter cone experiments by Kashiwagi and Ohlemiller, 1982

- non-flaming configurations
- imposed radiative heat flux:  $\varphi_{imp} = 17 \text{ kW/m}^2$  and  $\varphi_{imp} = 40 \text{ kW/m}^2$
- Oxydative and non-oxydative conditions

□ Assumed degradation path in non-oxydative conditions:



□ Widespread physical parameters found in the litterature (Bal and Rein, 2013) !

- $\triangleright \rho_S^0 \approx 1100 \text{ kg/m}^3$
- ▶  $\lambda_{S} \in [0.13, 0.27]$  W/m/K,  $c_{p,S} \in [1200, 3050]$  J/kg/K
- $\kappa_S \in [333, 5430] \text{ m}^{-1}, \varepsilon \in [0.85, 1]$
- ▶ Arrhenius constants: A<sub>S</sub> ∈ [1, 10<sup>23</sup>] s<sup>-1</sup>, E<sub>a</sub> ∈ [3.1 10<sup>4</sup>, 2.9 10<sup>5</sup>] J/mol, n<sub>R</sub> ∈ [0.5, 2.2]
  ▶ Heat of pyrolysis: L ∈ [4.2 10<sup>5</sup>, 10<sup>6</sup>] J/kg ... in non-conservative modellings !



Comparison to calorimeter cone experiments by Kashiwagi and Ohlemiller, 1982

- non-flaming configurations
- imposed radiative heat flux:  $\varphi_{imp} = 17 \text{ kW/m}^2$  and  $\varphi_{imp} = 40 \text{ kW/m}^2$
- Oxydative and non-oxydative conditions

□ Assumed degradation path in non-oxydative conditions:



□ Widespread physical parameters found in the litterature (Bal and Rein, 2013) !

- $\triangleright \rho_S^0 \approx 1100 \text{ kg/m}^3$
- ▶  $\lambda_{S} \in [0.13, 0.27]$  W/m/K,  $c_{p,S} \in [1200, 3050]$  J/kg/K
- $\kappa_S \in [333, 5430] \text{ m}^{-1}, \varepsilon \in [0.85, 1]$
- ▶ Arrhenius constants: A<sub>S</sub> ∈ [1, 10<sup>23</sup>] s<sup>-1</sup>, E<sub>a</sub> ∈ [3.1 10<sup>4</sup>, 2.9 10<sup>5</sup>] J/mol, n<sub>R</sub> ∈ [0.5, 2.2]
  ▶ Heat of pyrolysis: L ∈ [4.2 10<sup>5</sup>, 10<sup>6</sup>] J/kg ... in non-conservative modellings !

□ Convective heat transfer coefficient

- ▶  $h \in [3.5, 34] \text{ W/m}^2/\text{K}$
- > Depends on the flow turbulence struture at the interface: constant value in any conditions ?



Comparison to calorimeter cone experiments by Kashiwagi and Ohlemiller, 1982

- non-flaming configurations
- imposed radiative heat flux:  $\varphi_{imp} = 17 \text{ kW/m}^2$  and  $\varphi_{imp} = 40 \text{ kW/m}^2$
- Oxydative and non-oxydative conditions

□ Assumed degradation path in non-oxydative conditions:



□ Widespread physical parameters found in the litterature (Bal and Rein, 2013) !

- $\triangleright \rho_S^0 \approx 1100 \text{ kg/m}^3$
- ▶  $\lambda_{S} \in [0.13, 0.27]$  W/m/K,  $c_{p,S} \in [1200, 3050]$  J/kg/K
- $\kappa_S \in [333, 5430] \text{ m}^{-1}, \varepsilon \in [0.85, 1]$
- ▶ Arrhenius constants: A<sub>S</sub> ∈ [1, 10<sup>23</sup>] s<sup>-1</sup>, E<sub>a</sub> ∈ [3.1 10<sup>4</sup>, 2.9 10<sup>5</sup>] J/mol, n<sub>R</sub> ∈ [0.5, 2.2]
  ▶ Heat of pyrolysis: L ∈ [4.2 10<sup>5</sup>, 10<sup>6</sup>] J/kg ... in non-conservative modellings !
- □ Convective heat transfer coefficient
  - ▶  $h \in [3.5, 34] \text{ W/m}^2/\text{K}$
  - Depends on the flow turbulence struture at the interface: constant value in any conditions ?
- □ The (model-dependent) constants must be determined !

## **Optimzed constants for PMMA**

□ *A priori* choice for several parameters

- $c_{p,S,j} \approx 1100 \text{ J/kg/K}$
- $h \approx 10 \text{ W/m}^2/\text{K}$  in non-flaming conditions
- $A_S$  and  $E_a$  in the validity band experimentally observed for PMMA (Bal and Rein, 2013):

$$E_a = a \ln(As) + b, \quad a = 4.87 \ 10^3, \ b \in [0, 5 \ 10^4]$$

□ Optimisation process (algorithm of Nelder and Mead, 1965) for the remaining parameters

$$\boldsymbol{p} = (A_{s,i}, b_i, n_i, L_i, c_{p,S,j}, \lambda_{S,j}, \kappa_{S,j}, \varepsilon_{S,j})$$

applied simultaneously to both  $\varphi_{imp} = 17 \text{ kW/m}^2$  and  $\varphi_{imp} = 40 \text{ kW/m}^2$  experiments.  $\Box$  At least 7 relevant data sets  $C_1 - C_7$  have been obtained.

- $C_1 C_3$ : no internal radiation;  $C_4 C_7$ : P1-radiation model
- $C_1 C_6$ : constant  $c_{p,S,j}$ ;  $C_7$ : experimental  $c_{p,S,j}$  (Agari et al., 1997)

□ Discrepancies to the experimental results:

- $\varphi_{imp} = 17 \text{ kW/m}^2$ : < 5% on the interface temperature, about 10% on the mass loss rate;
- ▶  $\varphi_{imp} = 40 \text{ kW/m}^2$ : < 1% on the interface temperature, < 5% on the mass loss rate.



## Results: comparison to the experiments of Kashiwagi and Ohlemiller, 1982



**Figure :** Comparison between the reference experimental results of Kashiwagi and Ohlemiller, 1982 ( $\blacksquare$ ) and the computed interface temperature (T) and mass loss rate ( $\dot{m}''$ )



## Results: comparison to the experiments of Kashiwagi and Ohlemiller, 1982



**Figure :** Comparison between the reference experimental results of Kashiwagi and Ohlemiller, 1982 ( $\blacksquare$ ) and the computed interface temperature (T) and mass loss rate ( $\dot{m}''$ )

- $\Box$  Numerical results in good agreement with the  $\varphi_{imp} = 40 \text{ kW/m}^2$ -experiments
- $\Box$  At  $\varphi_{imp} = 17 \text{ kW/m}^2$ :
  - steady state temperature not reached at t = 900 s contrary to the experiments
  - mass loss rate evolution not correctly reproduced
- □ Similar numerical results as Gpyro's (Lautenberger and Fernandez-Pello, 2009)

## Outline

**1** Introduction

- **2** Pyrolysis modelling developped for the ISIS software
- **3** Monophasic modelling validation
- **4** Proposed enhancements
- **5** Conclusion on the pyrolysis modelling strategy



#### □ Meaning of the current "validation"

- ▶ Dependence of the parameter sets to possible remaining implementation errors...
- ▶ ... and the modelling accuracy

#### □ Meaning of the current "validation"

- ▶ Dependence of the parameter sets to possible remaining implementation errors...
- ... and the modelling accuracy

#### □ Physical relevance of all the constant sets resulting from the optimization method ?



#### □ Meaning of the current "validation"

- ▶ Dependence of the parameter sets to possible remaining implementation errors...
- ▶ ... and the modelling accuracy
- □ Physical relevance of all the constant sets resulting from the optimization method ?
- □ The optimization process must include more physical criteria. Examples:
  - **Existence of a bubbled layer in PMMA pyrolysis**
  - **Steady state mass loss rate ?**

## More selection criteria: i) Bubbled layer thickness

- Idea: the bubbled layer reaches a steady state thickness:  $\delta \approx 3$  mm experimentally
- Possible definitions
  - $\rho_{\text{PMMA}}(\delta) = \rho_{\text{bPMMA}}(\delta)$   $\rho_{\text{bPMMA}}(\delta) = 0.99 \rho_{\text{bPMMA}}^{0}$



**Figure :** Partial densities profiles ( $\rho_{PMMA}$ : lines only;  $\rho_{bPMMA}$ : lines with squares) computed for an applied flux  $\varphi_{imp} = 40 \text{ kW/m}^2$  at t = 180 s. Shaded zone: observed bubbled zone thickness range.

 $\Box$   $C_4$ ,  $C_7$  to be eliminated ?

**Proposed enhancements** 

## More selection criteria: ii) Steady state mass loss rate

- Idea: PMMA pyrolysis approximately reaches a steady state behaviour with a temperature threshold and a constant mass loss rate
- The steady state mass loss rate evolves linearly with the total applied heat flux (experimental review of Lautenberger and Fernandez-Pello, 2009)
- $\Box$  For instance,  $\dot{m}'' = 0.014 \text{ kg/m}^2/\text{s}$  at  $\varphi_{\rm imp} = 40 \text{ kW/m}^2$  and  $\dot{m}'' = 0.024 \text{ kg/m}^2/\text{s}$  at  $\varphi_{\rm imp} = 60 \text{ kW/m}^2$



Figure : Interface temperature (T) and mass loss rate ( $\dot{m}^{\prime\prime}$ ) computed for  $\varphi_{imp} = 40 \text{ kW/m}^2$  (left) and  $\varphi_{imp} = 60 \text{ kW/m}^2$  (right). shaded zone: experimental steady mass loss rate values

 $\Box \ C_4, \ C_7$  to be eliminated...again ?

#### □ Meaning of the current "validation"

- ▶ Dependence of the parameter sets to possible remaining implementation errors...
- ... and the modelling accuracy
- □ Physical relevance of all the constant sets resulting from the optimization method ?
- □ The optimization process must include more physical criteria. Examples:
  - Existence of a bubbled layer in PMMA pyrolysis
  - **Steady state mass loss rate ?**


- ▶ Dependence of the parameter sets to possible remaining implementation errors...
- ... and the modelling accuracy
- □ Physical relevance of all the constant sets resulting from the optimization method ?
- □ The optimization process must include more physical criteria. Examples:
  - Existence of a bubbled layer in PMMA pyrolysis
  - Steady state mass loss rate ?
  - Switch to flaming configurations ?
  - Switch to more complex computations (large scale PMMA flat plate)

- ▶ Dependence of the parameter sets to possible remaining implementation errors...
- ... and the modelling accuracy
- □ Physical relevance of all the constant sets resulting from the optimization method ?
- □ The optimization process must include more physical criteria. Examples:
  - Existence of a bubbled layer in PMMA pyrolysis
  - Steady state mass loss rate ?
  - Switch to flaming configurations ?
  - Switch to more complex computations (large scale PMMA flat plate)
- □ Sensitivity to unknown parameters chosen in the "litterature range"
  - $\blacktriangleright$  Case of the surface parameters h and  $\varepsilon$ : 40 % discrepancy on the mass loss rate



- ▶ Dependence of the parameter sets to possible remaining implementation errors...
- ... and the modelling accuracy
- □ Physical relevance of all the constant sets resulting from the optimization method ?
- □ The optimization process must include more physical criteria. Examples:
  - Existence of a bubbled layer in PMMA pyrolysis
  - Steady state mass loss rate ?
  - Switch to flaming configurations ?
  - Switch to more complex computations (large scale PMMA flat plate)
- □ Sensitivity to unknown parameters chosen in the "litterature range"
  - $\blacktriangleright$  Case of the surface parameters h and  $\varepsilon$ : 40 % discrepancy on the mass loss rate
  - Influence of other modellings in CFD: radiation, turbulence, combustion



- ▶ Dependence of the parameter sets to possible remaining implementation errors...
- ... and the modelling accuracy
- □ Physical relevance of all the constant sets resulting from the optimization method ?
- □ The optimization process must include more physical criteria. Examples:
  - Existence of a bubbled layer in PMMA pyrolysis
  - Steady state mass loss rate ?
  - Switch to flaming configurations ?
  - Switch to more complex computations (large scale PMMA flat plate)
- □ Sensitivity to unknown parameters chosen in the "litterature range"
  - Case of the surface parameters h and  $\varepsilon$ : 40 % discrepancy on the mass loss rate
  - ▶ Influence of other modellings in CFD: radiation, turbulence, combustion
- Effect of missing phenomena in the current modelling ?

- ▶ Dependence of the parameter sets to possible remaining implementation errors...
- ... and the modelling accuracy
- □ Physical relevance of all the constant sets resulting from the optimization method ?
- □ The optimization process must include more physical criteria. Examples:
  - Existence of a bubbled layer in PMMA pyrolysis
  - Steady state mass loss rate ?
  - Switch to flaming configurations ?
  - Switch to more complex computations (large scale PMMA flat plate)
- □ Sensitivity to unknown parameters chosen in the "litterature range"
  - Case of the surface parameters h and  $\varepsilon$ : 40 % discrepancy on the mass loss rate
  - ▶ Influence of other modellings in CFD: radiation, turbulence, combustion
- □ Effect of missing phenomena in the current modelling ?
  - **Example of the convective heat transfer in porous media**
  - $\blacktriangleright$  Influence of the bubbled PMMA layer porosity  $\phi$

#### Comparison between monophasic and diphasic modellings



Figure : Comparison between the monophasic (—) and the diphasic modellings (· :  $\phi_{S,2} = 10^{-5}$ ; · - :  $\phi_{S,2} = 10^{-4}$ ; ----:  $\phi_{S,2} = 10^{-3}$ ; · · - :  $\phi_{S,2} = 10^{-2}$ ; - :  $\phi_{S,2} = 10^{-1}$ ). Base data set:  $C_5$ .

- □ Large dependance for  $\phi_{S,2} \in [10^{-5}, 10^{-2}]$
- □ Convergence towards the monophasic results for  $\phi_{S,2} > 10^{-2}$
- $\Box$  Assumed values of  $\phi_{S,2}$ :
  - $\phi_{S,2} \approx 0.1$ (Lautenberger and Fernandez-Pello, 2009)
  - $\phi_{S,2} \approx 0.001$  (Pizzo et al., 2015, visually)

p.19

RS

- ▶ Dependence of the parameter sets to possible remaining implementation errors...
- ... and the modelling accuracy
- □ Physical relevance of all the constant sets resulting from the optimization method ?
- **The optimization process must include more physical criteria**. Examples:
  - Existence of a bubbled layer in PMMA pyrolysis
  - Steady state mass loss rate ?
  - Switch to flaming configurations ?
  - Switch to more complex computations (large scale PMMA flat plate)
- □ Sensitivity to unknown parameters chosen in the "litterature range"
  - Example of the surface parameters h and  $\varepsilon$ : 40 % discrepancy on the mass loss rate
  - Influence of the surrounding physics in the fluid phase: radiation, turbulence, combustion
- □ Effect of missing phenomena in the current modelling ?
  - ▶ Example of the convective heat transfer in porous media
  - Influence of the bubbled PMMA layer porosity

- ▶ Dependence of the parameter sets to possible remaining implementation errors...
- ... and the modelling accuracy
- □ Physical relevance of all the constant sets resulting from the optimization method ?
- **The optimization process must include more physical criteria**. Examples:
  - Existence of a bubbled layer in PMMA pyrolysis
  - Steady state mass loss rate ?
  - Switch to flaming configurations ?
  - Switch to more complex computations (large scale PMMA flat plate)
- □ Sensitivity to unknown parameters chosen in the "litterature range"
  - Example of the surface parameters h and  $\varepsilon$ : 40 % discrepancy on the mass loss rate
  - Influence of the surrounding physics in the fluid phase: radiation, turbulence, combustion
- □ Effect of missing phenomena in the current modelling ?
  - Example of the convective heat transfer in porous media
  - Influence of the bubbled PMMA layer porosity
  - $\blacktriangleright$  No account for O\_2 concentration



- ▶ Dependence of the parameter sets to possible remaining implementation errors...
- ... and the modelling accuracy
- □ Physical relevance of all the constant sets resulting from the optimization method ?
- **The optimization process must include more physical criteria**. Examples:
  - Existence of a bubbled layer in PMMA pyrolysis
  - Steady state mass loss rate ?
  - Switch to flaming configurations ?
  - Switch to more complex computations (large scale PMMA flat plate)
- □ Sensitivity to unknown parameters chosen in the "litterature range"
  - Example of the surface parameters h and  $\varepsilon$ : 40 % discrepancy on the mass loss rate
  - Influence of the surrounding physics in the fluid phase: radiation, turbulence, combustion
- □ Effect of missing phenomena in the current modelling ?
  - Example of the convective heat transfer in porous media
  - Influence of the bubbled PMMA layer porosity
  - No account for  $O_2$  concentration
  - Enhancement of the degradation path ?



## Outline

1 Introduction

- **2** Pyrolysis modelling developped for the ISIS software
- **3** Monophasic modelling validation
- **4 Proposed enhancements**
- **5** Conclusion on the pyrolysis modelling strategy



- Questionable results obtained with a simple monophasic modelling used with optimized parameters
  - ▶ Not a proprer validation !
  - ▶ Fails to reproduce the initial pyrolysis behavior at lower incident flux
  - Parameter sets relevance to be evaluated at larger scale
  - Good agreement with large incident heat flux experiments
  - Provides good trends for long-term simulations

- Questionable results obtained with a simple monophasic modelling used with optimized parameters
  - ► Not a proprer validation !
  - ▶ Fails to reproduce the initial pyrolysis behavior at lower incident flux
  - Parameter sets relevance to be evaluated at larger scale
  - Good agreement with large incident heat flux experiments
  - Provides good trends for long-term simulations
- □ Need for a complementary analytical approach
  - A few reference materials to be completely characterized (heat transfers, thermochemistry, etc.)
  - Special care on the thermal degradation process (reactive path independent from the imposed temperature raise)
  - Need for a complete modelling (radiative, convective heat transfers; temperature-dependent parameters; 3D pyrolysis; etc...)
  - Necessary approach to carry out a modelling validation and predictive simulations



- Questionable results obtained with a simple monophasic modelling used with optimized parameters
  - ► Not a proprer validation !
  - ▶ Fails to reproduce the initial pyrolysis behavior at lower incident flux
  - Parameter sets relevance to be evaluated at larger scale
  - Good agreement with large incident heat flux experiments
  - Provides good trends for long-term simulations
- □ Need for a complementary analytical approach
  - A few reference materials to be completely characterized (heat transfers, thermochemistry, etc.)
  - Special care on the thermal degradation process (reactive path independent from the imposed temperature raise)
  - Need for a complete modelling (radiative, convective heat transfers; temperature-dependent parameters; 3D pyrolysis; etc...)
  - Necessary approach to carry out a modelling validation and predictive simulations
- □ Long-term additional modellings
  - ▶ 3D pyrolysis: vertical flat plate, porous media such as cable trays
  - Specific cable trays convective and radiative heat transfers models

- Questionable results obtained with a simple monophasic modelling used with optimized parameters
  - ► Not a proprer validation !
  - ▶ Fails to reproduce the initial pyrolysis behavior at lower incident flux
  - Parameter sets relevance to be evaluated at larger scale
  - Good agreement with large incident heat flux experiments
  - Provides good trends for long-term simulations
- □ Need for a complementary analytical approach
  - A few reference materials to be completely characterized (heat transfers, thermochemistry, etc.)
  - Special care on the thermal degradation process (reactive path independent from the imposed temperature raise)
  - Need for a complete modelling (radiative, convective heat transfers; temperature-dependent parameters; 3D pyrolysis; etc...)
  - Necessary approach to carry out a modelling validation and predictive simulations
- □ Long-term additional modellings
  - ▶ 3D pyrolysis: vertical flat plate, porous media such as cable trays
  - Specific cable trays convective and radiative heat transfers models
- □ Need for a "modelling balance" between all the involved physical phenomena !



# Thank you for your attention

## Bibliography

Nelder, J. A. and R. Mead (1965). "A Simplex Method for Function Minimization". In: The *Computer Journal* 7.4, pp. 308–313. DOI: 10.1093/comjn1/7.4.308. Kashiwagi, Takashi and Thomas J. Ohlemiller (1982). "A study of oxygen effects on nonflaming transient gasification of PMMA and PE during thermal irradiation". In: Symposium (International) on Combustion 19.1. Nineteenth Symposium (International) on Combustion, pp. 815 -823. DOI: http://dx.doi.org/10.1016/S0082-0784(82)80257-9. Kuo, Kenneth K. (1986). Principles of Combustion. John Wiley & Sons, Inc. Agari, Y. et al. (1997). "Thermal diffusivity and conductivity of PMMA/PC blends". In: Polymer 38.4, pp. 801 -807. DOI: http://dx.doi.org/10.1016/S0032-3861(96)00577-0. Lautenberger, C. W. and A. C. Fernandez-Pello (2009). "Generalized pyrolysis model for combustible solids". In: Fire Safety Journal 44, pp. 819–839. Bal, N. and G. Rein (2013). "Relevant model complexity for non-charring polymer pyrolysis". In: Fire Safety Journal 61, pp. 36-44. Ghorbani, Zohreh et al. (2013). "Limitations in the predictive capability of pyrolysis models based on a calibrated semi-empirical approach". In: *Fire Safety Journal* 61.0, pp. 274 –288. Pizzo, Yannick et al. (2015). "Steady and transient pyrolysis of thick clear PMMA slabs". In: Combustion and Flame 162.1, pp. 226–236. DOI: http://dx.doi.org/10.1016/j.combustflame.2014.07.004.



#### Outline

#### **6** Desciption of the pyrolysis modelling

**7** Model validation

**8** Sensitivity analysis

**9** Cable tray modelling



# Multi-species pyrolysis

#### □ Solid phase

- $S_1, \ldots, S_{N_S}$ : solid species
- ▶ Phasic densities  $\rho_{S,j}^0(T_S)$ : species mass over species volume
- Partial densities  $\rho_{S,j}$ : species mass over total solid volume
- Deformation velocity  $\mathbf{u}_{e,S}$
- $\Box$  Gas phase
  - $G_1, \ldots, G_{N_G}$ : gaseous species
  - Instantaneous ejection from the solid domain
  - ▶ Interface mass flow rate: partial densities  $\rho_{G,j}$ , mass fractions  $Y_{G,j} = \rho_{G,j} / \rho_G$
  - Species velocity  $\mathbf{u}_{e,G,j}$ , average gaseous velocity  $\rho_G \mathbf{u}_{e,G} = \sum_{j=1}^{N_G} \rho_{G,j} \mathbf{u}_{e,G,j}$
- Degradation reactions
  - $\blacktriangleright \ \mathcal{R}_1, \ldots, \mathcal{R}_{N_R} \text{ such as }$

(1) 
$$\mathcal{R}_{i} : \sum_{j=1}^{N_{S}} \mu'_{ij} S_{j} + \sum_{j=1}^{N_{G}} \nu'_{ij} G_{j} \longrightarrow \sum_{j=1}^{N_{S}} \mu''_{ij} S_{j} + \sum_{j=1}^{N_{G}} \nu''_{ij} G_{j}$$

 $\blacktriangleright$  Mass stoechiometric coefficients  $\mu_i^\prime, \mu_{ij}^{\prime\prime}, \nu_{ij}^\prime, \nu_{ij}^{\prime\prime}$  such as

(2) 
$$\sum_{j=1}^{N_S} (\mu'_{ij} - \mu''_{ij}) + \sum_{j=1}^{N_G} (\nu'_{ij} - \nu''_{ij}) = 0 \text{ and } \sum_{j=1}^{N_S} \mu_{ij} < 0 \quad \forall i$$

▶ Reaction rates modelled by Arrhenius laws:

(3) 
$$\dot{\omega}_i = \rho_{S,0} A_{S,i} e^{\frac{-E_{a,i}}{RT_S}} \left(\frac{\rho_{S,i}}{\rho_{S,0}}\right)^{\alpha_i}$$

# **Conservation equations:** mass and volume

□ Solid species

(4) 
$$\partial_t \rho_{S,j} + \boldsymbol{\nabla} \cdot \left( \rho_{S,j} \mathbf{u}_{e,S} \right) = \sum_{i=1}^{N_R} \mu_{ij} \dot{\omega}_i$$

□ Solid volume

(5) 
$$\nabla \cdot \mathbf{u}_{e,S} = \sum_{j=1}^{N_S} \rho_{S,j} \left( \partial_t (1/\rho_{S,j}^0) + \mathbf{u}_{e,S} \cdot \nabla (1/\rho_{S,j}^0) \right) + \sum_{i=1}^{N_R} \frac{\mu_{ij} \dot{\omega}_i}{\rho_{S,j}^0}$$

 $\Box$  Solid mass loss ( $\sum_{i=1}^{N_R}$ (4)<sub>j</sub>)

(6) 
$$\partial_t \rho_S + \boldsymbol{\nabla} \cdot \left( \rho_S \mathbf{u}_{e,S} \right) = \sum_{i=1}^{N_R} \left[ \sum_{j=1}^{N_S} \mu_{ij} \right] \dot{\omega}_i$$

□ Mass flux at the fluid/solid interface (instantaneous ejection):

(7) 
$$\int_{\Gamma_{\text{out}}} \rho_{G,j} \left( \mathbf{u}_{e,G,j} - \mathbf{u}_{e,S} \right) \cdot \mathbf{n} \, \mathrm{d}\sigma = \int_{\Omega_S^{\text{tot}}} \left[ \sum_{i=1}^{N_R} \nu_{ij} \dot{\omega}_i \right] \, \mathrm{d}\mathcal{V}$$
$$\dot{m}'' = \int_{\Gamma_{\text{out}}} \rho_G \left( \mathbf{u}_{e,G} - \mathbf{u}_{e,S} \right) \cdot \mathbf{n} \, \mathrm{d}\sigma = \int_{\Omega_S^{\text{tot}}} \sum_{i=1}^{N_R} \left[ \sum_{j=1}^{N_S} \nu_{ij} \dot{\omega}_i \right] \, \mathrm{d}\mathcal{V}$$

IRSN

#### **Conservation equations:** enthalpy

- $\Box$  Fundamental hypothesis: enthalpy (h) conservation of the whole system { gas + solid }
- $\square$  Enthalpy decomposition: formation  $\Delta h_f^0$  plus sensible  $ilde{h}$
- □ Conservative expression on the solid domain

(8) 
$$\partial_t(\rho_S \tilde{h}_S) + \nabla \cdot (\rho_S \tilde{h}_S \mathbf{u}_{e,S}) = -\sum_{i=1}^{N_R} L_i \dot{\omega}_i + \nabla \cdot (\lambda \nabla T) - \nabla \cdot q_{\mathsf{rad}}$$

Heat of pyrolysis associated to each degradation reaction:

$$L_{i} = \left(\sum_{j=1}^{N_{S}} \mu_{ij} \Delta h_{S,f,j}^{0} + \sum_{j=1}^{N_{G}} \nu_{ij} \Delta h_{g,f,j}^{0}\right)$$

#### □ P1 internal radiation model

- $\blacktriangleright$  Radiative heat flux vector defined as  ${\pmb q}_{\rm rad} = {\pmb \nabla} G/3\kappa$
- ► G: spheric integral of the radiation intensity
- $\kappa$ : radiative absorption coefficient)
- Incident radiation transport equation:

(9) 
$$-\boldsymbol{\nabla}\cdot(\boldsymbol{q}_{\mathsf{rad}}) = \boldsymbol{\nabla}\cdot\left(\frac{1}{3\kappa}\boldsymbol{\nabla}G\right) = \kappa G - 4\kappa\sigma_B T^4$$

# **Conservation equations: thermal fluid-solid interaction at the interface**

□ Boundary condition at the fluid/solid interface

 $q_{\mathsf{rad}} \cdot \mathbf{n} = \varepsilon_S \varphi_{\mathsf{imp}}$ 

$$\lambda \nabla T \cdot \mathbf{n} + h(T_I - T_F) + \varepsilon_S \sigma_B (T_I^4 - T_F^4) + \sum_{j=1}^{N_G} \rho_{G,j} \tilde{h}_{G,j} (\mathbf{u}_{e,G,j} - \mathbf{u}_{e,S}) \cdot \mathbf{n} = 0$$

#### with

- ▶  $T_I$ : interface temperature;  $T_F = \lim_{x \to x_I} T(x)$ ;
- $\varphi_{rad,abs} = \varepsilon_S \varphi_{imp}$  radiative flux transmitted into the solid;
- $\varphi_{\text{rad},\text{e}} = \varepsilon_S \sigma (T_I^4 T_F^4)$  radiatif flux emitted by the solid surface;
- $\blacktriangleright \ \varphi_{\rm imp}$  overall imposed radiative heat flux
- n solid outward unit normal vector.
- □ Case of an opaque solid
  - $\blacktriangleright$  No radiative heat transfer equation,  $q_{\rm rad}$  in the solid domain
  - Modified boundary condition which includes the surfacic radiative heat transfer

$$\lambda \nabla T \cdot \mathbf{n} + h(T_I - T_F) + \varepsilon_S \sigma_B(T_I^4 - T_F^4) - \varepsilon_S \varphi_{\mathsf{imp}} + \sum_{j=1}^{N_G} \rho_{G,j} \tilde{h}_{G,j}(\mathbf{u}_{e,G,j} - \mathbf{u}_{e,S}) \cdot \mathbf{n} = 0$$



Desciption of the pyrolysis modelling

#### Account for the porosity effects (1)

- $\Box$  Basic assumption: multiphase termal equilibrium,  $T_G = T_S = T$
- $\Box$  Porosity
  - ► Total porosity:

$$\phi = \delta \mathcal{V}_G / \delta \mathcal{V} = \sum_{j=1}^{N_S} \frac{\rho_{S,j}}{\rho_{S,j}^0}$$

where  $\rho_{S,j}$  are the solid species partial densities and  $\rho_{S,j}^0$  their intrinisic phase densities. Solid species partial porosity  $\phi_{S,j}$  such that

$$\phi = \sum_{j=1}^{N_S} \frac{\rho_{S,j} \phi_{S,j}}{\rho_{S,j}^0 (1 - \phi_{S,j})} \quad \text{and} \sum_{j=1}^{N_S} \frac{\rho_{S,j}}{\rho_{S,j}^0 (1 - \phi_{S,j})} = 1$$

 $\Box$  Gas phase notations

- ▶ Gas phase density  $\rho_G$ , dynamic pressure  $p_G$ , thermodynamic pressure  $P_{\text{th}}$ ;
- ▶ Mass fractions  $Y_{G,j}$  an molar masses  $W_{G,j}$  such that

$$\frac{1}{W_G} = \sum_{j=1}^{N_G} \frac{Y_{G,j}}{W_{G,j}}$$
 and  $\sum_{j=1}^{N_G} Y_{G,j} = 1$ 

 $\triangleright$  Relation between density, thermdynamic pressure and average molar mass  $W_G$ :

$$\rho_G = \frac{P_{\mathsf{th}} W_G}{RT}$$



Desciption of the pyrolysis modelling

#### Account for the porosity effects (2)

□ Gaseous species conservation

$$\partial_t (\rho_G \phi Y_{G,j}) + \boldsymbol{\nabla} \cdot (\rho_G \phi Y_{G,j} \mathbf{u}_{e,G}) - \boldsymbol{\nabla} \cdot (D \boldsymbol{\nabla} Y_{G,j}) = \sum_{i=1}^{N_R} \sum_{j=1}^{N_G} \nu_{ij} \dot{\omega}_i$$

□ Gas density conservation:

$$\partial_t(\rho_G\phi) + \mathbf{\nabla}\cdot\left(
ho_G\phi\mathbf{u}_{e,G}\right) = \sum_{i=1}^{N_R}\sum_{j=1}^{N_G}
u_{ij}\dot{\omega}_i$$

□ Pressure-gradient driven gas velocity: Darcy law

$$\mathbf{u}_{e,G} = -\frac{K}{\mu} \boldsymbol{\nabla} p_G$$

- $\hfill\square$  The combination of the Darcy law with the gas density conservation equation allows to solve a linear elliptic equation for  $p_G$
- □ Boundary conditions
  - $p_G = 0$  at  $x = x_L$ ;  $\partial_n p_G = 0$  at x = 0 (zero-velocity)
  - $\partial_n Y_{G,j} = 0$  on both sides.

#### Numerical method: principles

 $\hfill\square$  Implementation of a demonstration software for 1D pyrolysis

- □ Arbitrary Lagrangian-Eulerian discretization
  - $\mathbf{u}_a$ : mesh deformation velocity which coincides with the overall solid deformation
  - Transformation of the conservation equations (example of a quantity f):

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[ \int_{K} f \,\mathrm{d}\mathcal{V} \right] + \int_{\partial K} f_{\sigma} (\mathbf{u} - \mathbf{u}_{a})_{\sigma} \cdot \mathbf{n} \,\mathrm{d}\sigma = \int_{K} q \,\mathrm{d}\mathcal{V}$$

- □ First-order backward-Euler time discretization
- □ Finite volume discretization
  - centered schemes for the convective terms
  - centered diffusion
- □ Stability
  - ▶ Enthalpy: ensured by the diffusive term and the wellposedness of the continuous conservation law
  - Mass: ensured by the degradation laws  $(\sum_{j=1}^{N_S} \mu_{ij} < 0 \quad \forall i)$

## Outline

**6** Desciption of the pyrolysis modelling

#### **7** Model validation

**8** Sensitivity analysis

**9** Cable tray modelling



#### **Model validation**

#### **Constants optimisation method**

- $\hfill\square$  Demonstration pyrolysis code coupled with an optimisation method
  - ▶ Nelder & Mead simplex method (Nelder and Mead, 1965)
  - $\blacktriangleright$  cost function relative to the input parameters p and an experimental case c to minimize

$$f_{c}(\boldsymbol{p}) = \alpha_{T} \frac{\|T_{I,\text{num}}(\boldsymbol{p}) - T_{I,\text{exp}}\|_{t}^{2}}{\|T_{I,\text{num}}(\boldsymbol{p})\|_{t}^{2}} + \alpha_{m} \frac{\|\dot{m}_{\text{num}}^{\prime\prime}(\boldsymbol{p}) - \dot{m}_{\text{exp}}\|^{2}}{\|\dot{m}_{\text{num}}^{\prime\prime}(\boldsymbol{p})\|^{2}}, \quad \alpha_{T} + \alpha_{m} = 1$$

• overall cost function relative to both  $\varphi_{imp} = 17 \text{ kW/m}^2$  and  $\varphi_{imp} = 40 \text{ kW/m}^2$  experiments:

$$f(\pmb{p}) \, = \, f_{\rm 17kW/m^2}(\pmb{p}) + f_{\rm 40kW/m^2}(\pmb{p})$$

#### □ Some hints on the parameters

- ▶  $c_{p,S,j} \approx 1100 \text{ J/kg/K}$
- $h \approx 10 \text{ W/m}^2/\text{K}$  in non-flaming conditions
- Relation between A<sub>S</sub> and E<sub>a</sub> for PMMA (Bal and Rein, 2013):

$$E_a = a \ln(As) + b, \quad a = 4.87 \, 10^3, \ b \in [0, 5 \, 10^4]$$

□ Conclusion: parameters to determine:

$$\boldsymbol{p} = (A_{s,i}, b_i, n_i, L_i, c_{p,S,j}, \lambda_{S,j}, \kappa_{S,j}, \varepsilon_{S,j})$$



**Figure :** PMMA admissible zone for  $(\ln(A_S), E_a)$  (Bal and Rein, 2013)

#### Model validation

# Results: comparison to the experiments of Kashiwagi and Ohlemiller, 1982

|                                           |                  | Opaque           |                  | P1 radiation model |                  |                  |                  |
|-------------------------------------------|------------------|------------------|------------------|--------------------|------------------|------------------|------------------|
|                                           | ${\mathcal C}_1$ | ${\mathcal C}_2$ | ${\mathcal C}_3$ | ${\mathcal C}_4$   | ${\mathcal C}_5$ | ${\cal C}_6$     | ${\mathcal C}_7$ |
| $A_{S,1}$ (s <sup>-1</sup> )              | $1.0 \ 10^{10}$  | $1.52 \ 10^{10}$ | $2.75 \ 10^{10}$ | $1.34 \ 10^8$      | $1.13 \ 10^{10}$ | $1.45 \ 10^9$    | $1.96 \ 10^8$    |
| $A_{S,2} (s^{-1})$                        | $1.0 \ 10^{13}$  | $1.73 \ 10^{10}$ | $4.18 \ 10^{10}$ | $4.44 \ 10^9$      | $5.51 \ 10^{11}$ | $2.28 \ 10^{10}$ | $2.72 \ 10^{10}$ |
| $E_{a,i}^{\sim,-}$ (kJ/mol)               | (116, 184)       | (114, 150)       | (117, 155)       | (91.1, 165)        | (115, 161)       | (102, 154)       | (94.2, 167)      |
| $n_{R,i}$                                 | (1.0, 1.04)      | (1.0, 1.0)       | (1.0, 1.0)       | (1.25, 1.98)       | (1.0, 1.0)       | (1.0, 1.0)       | (1.43, 1.42)     |
| $L_2$ (J/kg)                              | $1.12 \ 10^6$    | $1.01 \ 10^{6}$  | $1.24 \ 10^6$    | $7.20 \ 10^5$      | $1.47 \ 10^{6}$  | $1.32 \ 10^6$    | $7.72 \ 10^5$    |
| $\rho_{S,j}^0$ (kg/m <sup>3</sup> )       | 1190             | 1190             | 1190             | 1190               | 1190             | 1190             | 1190             |
| $c_{p,S,j}^{\sim,j}$ (J/kg/K)             | 2100             | 2500             | 3000             | 1600               | 2500             | 3000             | Exp.             |
| $\lambda_{p,S,j}^{r_{j}}$ (W/m/K)         | 0.2              | 0.2              | 0.2              | 0.2                | 0.2              | 0.2              | Exp.             |
| $\kappa_{p,S,j}^{r,j}$ (m <sup>-1</sup> ) | N/A              | N/A              | N/A              | 1000               | 3270             | 4000             | Lin.             |
| $h ~({ m W/m}^2/{ m K})$                  | 10               | 10               | 10               | 10                 | 10               | 10               | 10               |
| $arepsilon_j$                             | 0.86             | 0.85             | 0.85             | 0.86               | 0.95             | 0.96             | 0.85             |
| $c_{p,G}~({\rm J/kg/K})$                  | 1100             | 1100             | 1100             | 1100               | 1100             | 1100             | 1100             |

Table : Set of constants obtained by optimisation with respect to Kashiwagi and Ohlemiller, 1982 experiments. Exp.: constants imposed to the values determined by Agari et al., 1997; Lin.:  $\kappa(T) = \kappa_0 + \kappa_1(T - T_0), \kappa_0 = 1000 \text{ m}^{-1}, \kappa_1 = 10 \text{ m}^{-1}/\text{K}, T_0 = 300 \text{ K}.$ 



#### Model validation

# Results: comparison to the experiments of Kashiwagi and Ohlemiller, 1982

|                                             |                  | Opaque           |                  | P1 radiation model |                  |                  |                  |
|---------------------------------------------|------------------|------------------|------------------|--------------------|------------------|------------------|------------------|
|                                             | ${\mathcal C}_1$ | ${\mathcal C}_2$ | ${\mathcal C}_3$ | ${\mathcal C}_4$   | ${\mathcal C}_5$ | ${\mathcal C}_6$ | ${\mathcal C}_7$ |
| $A_{S,1}$ (s <sup>-1</sup> )                | $1.0 \ 10^{10}$  | $1.52 \ 10^{10}$ | $2.75 \ 10^{10}$ | $1.34 \ 10^8$      | $1.13 \ 10^{10}$ | $1.45 \ 10^9$    | $1.96 \ 10^8$    |
| $A_{S,2} (s^{-1})$                          | $1.0 \ 10^{13}$  | $1.73 \ 10^{10}$ | $4.18 \ 10^{10}$ | $4.44 \ 10^9$      | $5.51 \ 10^{11}$ | $2.28 \ 10^{10}$ | $2.72 \ 10^{10}$ |
| $E_{a,i}^{\sim,-}$ (kJ/mol)                 | (116, 184)       | (114, 150)       | (117, 155)       | (91.1, 165)        | (115, 161)       | (102, 154)       | (94.2, 167)      |
| $n_{R,i}$                                   | (1.0, 1.04)      | (1.0, 1.0)       | (1.0, 1.0)       | (1.25, 1.98)       | (1.0, 1.0)       | (1.0, 1.0)       | (1.43, 1.42)     |
| $L_2$ (J/kg)                                | $1.12 \ 10^6$    | $1.01 \ 10^{6}$  | $1.24 \ 10^6$    | $7.20 \ 10^5$      | $1.47 \ 10^6$    | $1.32 \ 10^6$    | $7.72 \ 10^5$    |
| $\rho_{S,j}^0$ (kg/m <sup>3</sup> )         | 1190             | 1190             | 1190             | 1190               | 1190             | 1190             | 1190             |
| $c_{p,S,j}$ (J/kg/K)                        | 2100             | 2500             | 3000             | 1600               | 2500             | 3000             | Exp.             |
| $\lambda_{p,S,j}^{r_{j}}$ (W/m/K)           | 0.2              | 0.2              | 0.2              | 0.2                | 0.2              | 0.2              | Exp.             |
| $\kappa_{p,S,j}^{r_{j}}$ (m <sup>-1</sup> ) | N/A              | N/A              | N/A              | 1000               | 3270             | 4000             | Lin.             |
| $h~({ m W/m}^2/{ m K})$                     | 10               | 10               | 10               | 10                 | 10               | 10               | 10               |
| $arepsilon_j$                               | 0.86             | 0.85             | 0.85             | 0.86               | 0.95             | 0.96             | 0.85             |
| $c_{p,G}~({\rm J/kg/K})$                    | 1100             | 1100             | 1100             | 1100               | 1100             | 1100             | 1100             |

Table : Set of constants obtained by optimisation with respect to Kashiwagi and Ohlemiller, 1982 experiments. Exp.: constants imposed to the values determined by Agari et al., 1997; Lin.:  $\kappa(T) = \kappa_0 + \kappa_1(T - T_0), \kappa_0 = 1000 \text{ m}^{-1}, \kappa_1 = 10 \text{ m}^{-1}/\text{K}, T_0 = 300 \text{ K}.$ 

□ Gap between the computed and experimental results

- $ightarrow arphi_{imp} = 17 \text{ kW/m}^2$ : < 5% on the interface temperature, about 10% on the mass loss rate;
- $\varphi_{imp} = 40 \text{ kW/m}^2$ : < 1% on the interface temperature, < 5% on the mass loss rate.

### Material variability and modelling deficiencies



**Figure :** Mass loss rate evolution. Comparison between Kashiwaghi & Ohlemiller and Pizzo Pizzo et al., 2015 experiments under 20%  $O_2$ 



# Material variability and modelling deficiencies



**Figure :** Mass loss rate evolution. Comparison between Kashiwaghi & Ohlemiller and Pizzo Pizzo et al., 2015 experiments under 20%  $O_2$ 

- $\Box$  One could expect  $\dot{m}_{17~\rm kW/m^2}^{\prime\prime}$  closer from  $\dot{m}_{18~\rm kW/m^2}^{\prime\prime}$  than from  $\dot{m}_{14~\rm kW/m^2}^{\prime\prime}$
- □ Differencies in the tested PMMA properties ?

# Material variability and modelling deficiencies



**Figure :** Mass loss rate evolution. Comparison between Kashiwaghi & Ohlemiller and Pizzo Pizzo et al., 2015 experiments under 20%  $O_2$ 

- $\Box$  One could expect  $\dot{m}_{17 \text{ kW/m}^2}^{\prime\prime}$  closer from  $\dot{m}_{18 \text{ kW/m}^2}^{\prime\prime}$  than from  $\dot{m}_{14 \text{ kW/m}^2}^{\prime\prime}$
- □ Differencies in the tested PMMA properties ?
- □ A new optimization process may be necessary
- $\Box$  Generic consideration of the O<sub>2</sub> concentration ?

#### **Comparison to Pizzo experiments**



**Figure :** Comparison between the experimental results of Pizzo and the related simulations. Left: temperature; right: mass loss rate.

- $\Box$  Remark: available temperature at x = 5 mm and x = 25 mm from the interface
- Same quantitative error between the computed and experimental temperatures as in Kashiwagi & Ohlemiller case
- Even better agreement on the mass loss rates, except in the early stages of the experiment (initial linear growth)

## Outline

**6** Desciption of the pyrolysis modelling

7 Model validation

**8** Sensitivity analysis

**9** Cable tray modelling



# Sensitivity to ill-known parameters

- The thermophysic parameters may be characterized with reasonable reliability in DSC
- No a priori knowledge about the thermokinetic constants  $(A_s, E_a, n_R, L)$
- Interface heat transfer parameters:
  - wide range for the surface emissivity in litterature
  - difficult evaluation of the convective heat transfers (turbulence models...)
- Additional difficulty of the radiative heat transfers in the solid
- Base parameters for the sensitivity study
  - ▶  $A_s = (10^{10}, 10^{13}) \text{ s}^{-1}$ ,  $E_a = (1.16 \ 10^5 1.91 \ 10^5) \text{ kJ/mol}$ ,  $N_R = 1$ ; ▶  $L_2 = 2 \ 10^6 \text{ J/kg}$ ,  $c_{p,G} = 1100 \text{ J/kg/K}$

  - $\triangleright$   $c_{p,S}, \lambda_S$ : experimental characterizations  $\kappa_S$ : linear growth
  - ▶  $h = 10 \text{ W/m/K}, \varepsilon = 0.9$

## Sensitivity to $A_s$



Figure : Interface temperature (T) and mass loss rate ( $\dot{m}^{\prime\prime}$ ) computed for  $\varphi_{imp} = 40 \text{ kW/m}^2$ .  $A_S$  is varying.

- $\square$   $A_{S,1}$  and  $A_{S,2}$  vary from  $10^{10}$  to  $10^{15}~{\rm s}^{-1}$
- $\Box$  No influence of  $A_{S,1}$  !
- $\Box$  Stabilization for large values of  $A_{S,2}$
- $\hfill\square$  Large mass loss rate  $\Leftrightarrow$  low steady state interface temperature



# Sensitivity to $E_a$



Figure : Interface temperature (T) and mass loss rate ( $\dot{m}^{\prime\prime}$ ) computed for  $\varphi_{imp} = 40 \text{ kW/m}^2$  for various activation energy values.

- $\Box \ E_{a,1} \in [83, 139] \text{ kJ/mol};$
- $\Box$   $E_{a,2}$ : 145 kJ/mol (red lines)  $\rightarrow$  201 kJ/mol (purple lines)
- $\Box E_{a,2} > 1.92 \ 10^5 \text{ kJ/mol} \implies$  no dependence from  $E_{a,1}$

IRS
# Sensitivity to $L_2$



Figure : Interface temperature (T) and mass loss rate ( $\dot{m}''$ ) computed for  $\varphi_{imp} = 40 \text{ kW/m}^2$ . Variations of the heat of pyrolysis.

 $\Box L_2 \in [5 \ 10^5, 3 \ 10^6] \text{ J/kg}$ 

### Sensitivity to h and $\varepsilon$



Figure : Interface temperature (T) and mass loss rate ( $\dot{m}''$ ) computed for  $\varphi_{imp} = 40 \text{ kW/m}^2$ . Variations of the convective heat exchange coefficient.

 $\ \square \ h \in [5,25] \ {
m W/m/K}$ ,  $arepsilon \in [0.8,1]$ 

### Sensitivity to h and $\varepsilon$



Figure : Interface temperature (T) and mass loss rate ( $\dot{m}''$ ) computed for  $\varphi_{imp} = 40 \text{ kW/m}^2$ . Variations of the surface emissivity.

 $\square \ h \in [5,25] \ {
m W/m/K}$ ,  $arepsilon \in [0.8,1]$ 

### Sensitivity to h and $\varepsilon$



Figure : Interface temperature (T) and mass loss rate ( $\dot{m}^{\prime\prime}$ ) computed for  $\varphi_{imp} = 40 \text{ kW/m}^2$ . Both parameters varying.

 $\square$   $h \in [5, 25]$  W/m/K,  $\varepsilon \in [0.8, 1]$ 

### Outline

**6** Desciption of the pyrolysis modelling

**7** Model validation

**8** Sensitivity analysis

**9** Cable tray modelling



### Scale separation

 $\Box$  Local scale: cable diameter R, distance between two cables d;



IRS

#### Scale separation

- $\Box$  Local scale: cable diameter R, distance between two cables d;
- $\Box$  Tray length scale *L*, distance between two trays *D*;



R

#### Scale separation

- $\Box$  Local scale: cable diameter R, distance between two cables d;
- $\Box$  Tray length scale *L*, distance between two trays *D*;
- $\Box$  Homogeneisation scale to be introduced  $r_0$  (representative volume element)



#### Scale separation

- $\Box$  Local scale: cable diameter R, distance between two cables d;
- $\Box$  Tray length scale *L*, distance between two trays *D*;
- $\Box$  Homogeneisation scale to be introduced  $r_0$  (representative volume element)
- $\square$  Separation assumption:  $(R, d) \ll r_0 \ll (L, D)$



### Homogeneization methods

#### □ First step: using the current model with slight enhancements

- ▶ 1D-modelling to 3D-modelling
- convective effects in the cable tray modeled as a porous medium: addition of a Darcy law
- associated convective heat transfers
- □ Important remark: the Darcy law ⇔ basic homogeneization of the Navier-Stokes equations in porous media
- □ Second step: improved homogeneisation techniques
  - small scale "non-porous" pyrolysis model
  - homogeneization of the small scale model
  - ▶ the resulting closure model to be solved is specific of the cable tray configuration

