

Modelling of the swelling behaviour of a fire retarded material under a cone calorimeter

Manon Fleurotte^{1,3}, <u>Abdenour Amokrane¹</u>, Olivier Autier¹, Gérald Debenest², Gaëlle Fontaine³, Serge Bourbigot³

¹ EDF (Electricité de France), Lab Chatou, France

² Institut de Mécanique des Fluides de Toulouse (IMFT)–Université de Toulouse, CNRS-INPT-UPS, Toulouse, France

³ Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207–UMET–Unité Matériaux et Transformations, Lille, France

EDF R&D Lab Chatou, 06/07/2023

Context

- EDF (Electricité de France) : a French <u>multinational electric utility</u> company owned by the French state.
 - EDF operates a diverse portfolio of at least 120 gigawatts of generation capacity in Europe, South America, North America, Asia, the Middle East, and Africa
 - In 2009, EDF was the world's largest producer of electricity. One of the largest in the world today.

□ Electricy production in France :

- Almost 100% produced by EDF
- ~ 75 % from nculear energy

□ Fire hazard

• Most likely risk facing a Nucear Power Plant (NPP)

Issues

edf

- Public safety, protect the environment
- Plant safety
- Availability
- Electrical cables may constitute a fuel for fire hazard
 - High heat load: hundreds of kms of cables in a NPP
 - Complex fuel: nature of material

Electricy production in France in 2022

Context

□ Cables are undergoing deformation during the pyrolysis process

- Some materials used for the fabrication of electrical cables: • **PVC** (polyvinyl chloride), **EVA/ATH** (ethylene vinyl acetate containing aluminum trihydroxide), **PE/ATH** (polyethylene containing aluminum *trihydroxide*)
- These materials are swelling during their thermal • decomposition process
- This phenomenoun has an influence on the whole process, and ٠ on the MLR/HRR

PVC cables deformation observed under a cone calorimeter

 \rightarrow Need to acount for the deformation phenomenoun in the pyrolysis model to be predictive on the MLR/HRR prediction

Summary

1. Context

2. Deformation Model and Validation

3. Conclusion

Litterature review of existing models

- Existing models are not adapted: different application, order of complexity
- We selected the model of *Zhang et al*^[1]
- Model developped for the modelling of coatings' swelling
- □ Need to be adapted for our application
- Modifying the model to add some important physical aspects
- The modified model was implemented in the pyrolysis code Gpyro and validated on cone calorimeter experiments, including:
 - Thickness evolution in function of time
 - MLR
 - Back surface temperature
 - Denisty evolution in function of time

Model adapted to represent the EVA/ATH material

- Model based on the law of perfect gases
- Swelling is linked to the expansion of gases in the solid matrix
- Thickness was observed to increase after the first reaction.
- No more increase of the thikness with the second reaction

$$\frac{\partial z}{\partial t} = \frac{\beta R}{aP_0M_1} \left(T \frac{\partial m_{G_1}}{\partial t} + m_{G_1} \frac{\partial T}{\partial t} \right)$$
$$z_t = z_{t-\Delta t} + \Delta t \frac{\partial z}{\partial t}$$

□ Influence of the porosity on the swelling process

• Adding a term in the expression of β to acount for the fact that the presence of the prorosity allows the gas to escpae more easily from the material

$$\beta = \left(\frac{T_{melt}}{T}\right)^{C_{trap} \frac{m_s T}{m_{s,0} T_0}} \frac{1 - \Psi}{1 - \Psi_0}$$

Reaction scheme of EVA/ATH material : $EVA/ATH_v \rightarrow 0.794 EVA/ATH_i + 0.206 G_1$ $EVA/ATH_i \rightarrow 0.547 EVA/ATH_c + 0.453 G_2$

- □ Study of EVA/ATH samples
- □ Experiments under cone calorimeter
- Experiments have been performed under a cone calorimeter
- The experiments followed the ASTME906 procedure
- Repetability was verified

Measurements

- Mass Loss
- Back surface temperature
- Thikness evolution with time
- Density evolution with time

- □ Measurements under a cone calorimeter
- First, repeatability was checkd on complete experiments
- Then, experiments were stopped at different times
- Measurement of thikness at each time

edf

Observation of the structure of the material, allowing to adapt the model

Thikness versus Times

Times at which the cone calorimeter exp. were stopped to measure thikness and observe material structure:

t (s) = 15, 24, 42, 72, 100, 150, 200 and 250

Some results

- Good agreement is obtained
- The deformation model is able to epredict the thikness and density with good accuracy
- Advantage:
 - No need to impose the density of the material and it evolution with time (compared to classical models used in the littérature)
 - Prediction of the thikness evolution

Summary

1. Context

2. Deformation Model and Validation

3.Conclusion

Conclusion

□ For more details see our article :

Fleurotte M, Debenest G, Authier O, Fontaine G, Bourbigot S, Amokrane A. Modelling of the swelling behaviour of a fire retarded material under a cone calorimeter. Journal of Fire Sciences. 2023;41(4):136–166. doi:10.1177/07349041231177183

- A deformation model was devlopped and implemented in the pyrolysis code Gpyro
- The model is validated on cone calorimeter experiments
- The model obtained good results: good prediction of the thickness evlution with time as well as density evolution with time
- The model can easily be extended to other type of materials

Perspectives

- Further validation of the model: different operating conditions, other materials etc.
- Further predictibility: the C_{trap} (fraction of trapped gas in the expression of β) parameter semms to have a real physical significance.
 - \rightarrow So, now we intend to go further in the predictive modelling of this parameter

Thank you !