

APPROCHE MULTI-ÉCHELLE POUR LA CARACTÉRISATION DE LA RÉACTION AU FEU DU BOIS.

T. Rogaume, J. Colombiano, V. Dréan, E. Guillaume, B. Batiot, F. Richard

Efectis

Rencontres RESOFEUX

CONTEXTE - PROPAGATION DE FLAMME

Transfert de chaleur dans le solide - échauffement

Décomposition thermique Emissions gazeuses

(Auto)inflammation du mélange gazeux : mélange aéraulique, LII-LSI, énergie, température

Propagation du front de flamme

Ensemble des processus à décrire

Couplage fort des phases condensée et gazeuse

Rencontres RESOFEUX

2

								\sim
Mise en évidence des processus			Données d'entrée aux modèles		Modélisation de			
Latérale	Verticale	2D	Extraction	Validation	Latérale	Verticale	2D	

IS a e 🦯

FITTLE BELTY BE A SMART BE A SMART

Université

de Poitiers

0

0

Rencontres RESOFEUX

4

Objectifs

Université

*de*Poitiers

- Evaluer les processus de décomposition thermique et de propagation latérale de flamme
- Procédure
 - Propagation latérale
 - ✓ Essais banc IMO-LIFT NF ISO 5658-2
 - Propagation verticale

60

- ✓ Banc développé à cet effet
- ✓ Echantillon : 0,15 x 0,6 x 0,018 m^3 (L x h x e)
- ✓ Gradient de flux thermique selon l'axe z
- Echantillons conditionnés avant chaque essai

200

400

Distance (mm)

600

800

Propagation latérale 1D

I S a e 🥕

ENSMA

Porte échantillon isolant

PROPAGATION UNIDIRECTIONNELLE

PROPAGATION BIDIRECTIONNELLE

Objectifs

- Evaluer si les phénomènes précédents sont présents à ces échelles
 - ✓ Coupler les deux types de propagation de flamme

□ Procédure

- Echantillon : 1,4 x 1,8 x 0,018 m³ (L x h x e)
- Source de chaleur : panneau radiant 1,0 x 0,5 m²
- Flux reçu directement face au panneau : 50 kW.m⁻²

Mesures

- Hauteur de flamme
- Températures dans le solide
- Perte de masse de l'échantillon
- Flux de chaleur incident à la paroi
- Taux de dégagement de chaleur

5

PROPAGATION BIDIRECTIONNELLE

□ Trois temps caractéristiques

<u>Temps 1</u> : inflammation et propagation rapide de flamme

100 s d'exposition

- Propagation verticale rapide : forte influence de la contribution énergétique de la flamme
- Faible décomposition thermique en partie haute (partie uniquement impactée par la contribution de la flamme)

<u>Temps 2</u> : influence de l'épaisseur de char

500 s d'exposition

- ✓ Faible échauffement du sol Formation de char
- Diffusion de l'oxygène dans matrice de char^[1]
- Production de CO (oxydatic char)

 <u>Temps 3</u> : influence de la condition en face arrière de l'échantillon

900 s d'exposition

- Retour thermique en partie basse, survenant lorsque l'eau est totalement évaporée (environ 700 s)
- ✓ Flamme de plus forte intensité, couvrant la totalité du matériau

Rencontres RESOF

CINIS

ISƏCƏR

Université de Poitiers

	Observations expérimentales							
	Phase gaz	Phase solide						
	 Modèle de combustion : Caractériser la quantité de mouvement Caractériser le transport d'espèce 		 Bien caractériser le bilan à la paroi : Convection Conduction Rayonnement 					
	Modèle de rayonnement		Equation de transfert thermique 1D					
	Critère de front de flamme assimilé à un critère en phase solide		Diffusion de l'oxygène					
	Effets secondaires dominent pour des flux incidents inférieurs à 20 kW.m ⁻²		 Modèle de pyrolyse avec : Prise en compte des réactions d'oxydation Prise en compte de l'évaporation de l'eau 					
			Effets secondaires dominent pour des flux incidents inférieurs à 20 kW.m ⁻²					

Nécessité de représenter correctement chaque phénomène physique pour prédire le comportement global (Rayonnement, convection, quantité de mouvement, combustion, pyrolyse, etc.)

• Amélioration des sous modèles

Nécessité de déterminer les données d'entrée

Validation des modèles et des données d'entrée à échelle croissante

Туре	Propriétés cinétiques	Propriétés thermiques	Propriétés de combustion
Notation	Α, Ε, ν, n, m	$\lambda, \rho, Cp, \epsilon, \Delta H$	Fuel, ΔH_c , χ_r , v_{air} , v_{fuel} , v_{CO_2} , v_{CO} , v_{Soot} et v_{N_2}
Détermination	ATG	Disque chaud, DSC, mesure, littérature	Cône calorimètre, littérature, FDS (valeurs par défaut)

8

□ Analyse thermogravimétrique

• Modèle de décomposition thermique

Essais ATG à 5°C.min⁻¹, sous air et sous azote

Paramètres cinétiques – Optimisation inverse (Particle Swarm Optimisation)

Réaction	Type de réaction	Réactifs		Produits	A (s ⁻¹)	E (kJ.kmol ⁻¹)	n	n _{o2}	ν
1	Evaporation	wet wood	$\stackrel{\omega_1}{\rightarrow}$	v ₁ dry wood	4,06.10 ⁸	6,65.10 ⁴	2,80	0	0,90
				$+(1-v_1)$ water vapor					
2	Pyrolyse	dry wood	$\stackrel{\omega_2}{\rightarrow}$	$v_2 char + (1 - v_2) pyrolysate$	1,59.10 ⁹	1,37.10 ⁵	0,95	0	0,18
3	Oxydation	$dry wood + O_2$	$\stackrel{\omega_3}{\rightarrow}$	$v_3 char + (1 - v_3)$ pyrolysate	3,30.10 ²⁵	3,00.10 ⁵	1,20	1	0,30
4	Oxydation	$char + 0_2$	$\stackrel{\dot{\omega_4}}{\rightarrow}$	$v_4ash + (1 - v_4)$ carbon monoxide	1,86.10 ²⁷	3,90.10 ⁵	0,50	1	0,00

□ Analyse calorimétrique différentielle

Caractérisation de la capacité thermique et des enthalpies de réaction

- $\Delta H_{vaporisation} = +2410 \, kJ. \, kg^{-1} \, (2257 \, kJ. \, kg^{-1} \, \text{dans la littérature (7% d'écart))}$
- Flux de chaleur du bois = Enthalpie sensible + Enthalpie de réaction
 - Définition d'une ligne de base calculée à l'aide de l'avancement de la réaction α

$$\alpha = \frac{m(0) - m(T)}{m(0) - m(end)}$$
 et ligne de base = $(1 - \alpha)Cp_{Dry} - \alpha Cp_{Char}$

- $Cp_{Dry} = 1,16 + 3,05.10^{-3}$. $T (J. g^{-1}. C^{-1})$ et $Cp_{Char} = 0,47 + 2,10.10^{-3}$. $T(J. g^{-1}. C^{-1})$
- $\Delta H_{d\acute{e}composition} = -61,84 \ kJ. \ kg^{-1}$

□ Méthode du disque chaud

- Caractérisation de la conductivité thermique du bois vierge
 - ✓ À 25°C et 100°C
 - $\lambda_{Wood} = 0,126 + 1,45.10^{-4} \text{ T(°C)}$

DÉTERMINATION DES PROPRIÉTÉS

Essais au cône calorimètre (ISO 5660-1)

- Enthalpie de combustion
 - ✓ ΔH_c = 14 MJ.kg⁻¹, obtenue au cône calorimètre (HRR/MLR)

Littérature ^[1-2]

Equation de combustion

 $\checkmark \ C_{3,4}H_{6,2}O_{2,5} + \ 13,61air \ \rightarrow 3,32CO_2 + 3,10H_2O + 0,012CO + 0,08Soot + 13,61N_2$

Fraction radiative

 $\checkmark \chi_r = 0.35$

[1] Hostikka, et McGrattan. Large eddy simulation of wood combustion. NIST, 2001.

[2] Tewarson. Generation of heat and chemical compounds in fire. SFPE Handbook, 2002. RESOFEUX

VALIDATION À L'ÉCHELLE DU CÔNE

- Dynamique de décomposition thermique correctement captée par le code
- Résidu à l'extinction identique

I S a e 🥍

ENS MA

Université

*de*Poitiers

Oxydation de char en fin d'essai non représentée (longueur de diffusion de l'oxygène égale à 1 mm)

VALIDATION PROPAGATION LATÉRALE

Rencontres RESOFEUX

VALIDATION PROPAGATION BIDIRECTIONNELLE

Comparaison Expérimentale - Numérique

- Dégagement de chaleur à l'instant du retour thermique mal prédit (environ 200 s plus tôt)
- □ THR en fin d'essai correctement prédit → Masse combustible émise correctement captée par le code

Temps (secondes)

Rencontres RESOFEUX