

OPTIMIZATION VIA MACHINE LEARNING OF INTUMESCENT COATING FOR WOOD SUBSTRATES

Eric VERRET – 2nd year PhD student Supervisors : Prof. Sophie DUQUESNE, UMET and Prof. Anthony COLLIN, LEMTA EDF, Chatou - 07/07/23

Introduction

Wood is more and more used in building applications

Low grey energy compared to traditional materials

How to protect efficiently wood against fire ?

Our strategy

Intumescent coating efficient

Composition of the FR paint

Design of Experiment (DoE): statistical approach

- High dimension X
- Multi-objective 🗡
- Noisy observation X

machine learning guided optimization

Multi-Objective Bayesian Optimisation (MOBO)

Optimization of the chemical composition of an intumescent coating

Can we use AI for noisy observations ?

Can we optimise better and faster with AI ?

Weil, Edward D. "Fire-protective and flame-retardant coatings-A state-of-the-art review." Journal of fire sciences 29.3 (2011): 259-296. Kotthoff, L., Wahab, H., & Johnson, P. (2021). Bayesian Optimization in Materials Science: A Survey. arXiv preprint arXiv:2108.00002.

Problem setup-Formulation

Problem setup-Fire performance

Outputs: 4 Fire Parameters (FP) to optimize

FP1. Total heat rate released(THR)FP2. Time of ignition (ti)

FP3. Median of the mass loss rate

FP4. Distance of degradation

Horizontal Mass Loss Cone (MLC)

- Heat flux density: 50 kW/m²
- Test time: 30 min
- Measurement of the heat released: Thermopile

Vertical Mass Loss Cone (MLC)

- Heat flux density: 50 kW/m²
- Test time: 30 min

• Median of the mass loss rate (FP4)

Critical heat flux at extinguishment (CFE)-1/3 scale

Machine learning algorithm (K-means clustering) = Image segmentation

What is Bayesian Optimization (BO)? 1D example Maximisation of y = f(x)

f(x)

Take away

- Maximisation of a black box function by an active loop
- Maximise the knowledge behind each point
- Efficient for noisy and costly evaluation

What is Bayesian Optimization (BO)? 1D example y = f(x)

Multi-objective optimization (MOBO) – Pareto front

Take away

- multi-objective optimization = no single best solution
- Pareto optimal solutions = trade off between objectives

Multi-Objective Bayesian Optimisation - pipeline

Multi-Objective Bayesian Optimisation - pipeline

Active learning loop (work in process)

Prediction of the model

facebook/Ax

Conclusion

- Simple intumescent coating as a case study
- The performance of the coating is evaluate 4 Fire Parameters performed by 3 fire tests under 6 input parameters
- Multi objective Bayesian optimization (MOBO) has been chosen to find the optimum configuration of the paint (pareto front) and minimize the number of trials

Outlooks

- This framework applicable on other substrates ?
- Generalisation of the segmentation methodology for the measurement of degradation front in different materials

Copen Science

https://github.com/Eric-verret

Thank you for your attention !

Evaluation of the performance of the model-

Cross-validation

facebook/Ax

Adaptive Experimentation Platform

Actual Outcome

Metric	THR	Ti
Mean absolute percentage error (MAPE)	13%	17%
Coefficient of determination (R ²)	0,57	0,42
Fisher exact test p	0,011	0,011