

Fire Behavior and numerical simulation of facade elements for buildings

Comportement au feu et simulation numérique d'éléments de façade pour le bâtiment

Mingwei TANG

Tuteur: Serge BOURBIGOT Cotuteur: Thomas ROGAUME Cotuteur: Benjamin BATIOT Cotutrice: Tsilla BENSABATH

Université de Lille

Project

• ANR project FRENETICS (Fire REsistaNce of External Thermal Insulation Composite Systems)

TANG Mingwei

Université de Lille

BOURBIGOT Serge

BENSABATH-PEREZ Tsilla

Pprime – Université de Poitier

ROGAUME Thomas

BATIOT Benjamin

CATALOGUE

- Context
- Objective
- Methodology
- Test at small-scale
 - TGA
 - STA
 - Thermal conductivity *k*
- Test bench
 - Configuration of bench
 - Fire test
- Numerical Simulation
- Conclusion

Context

Increasing energy performance

 \rightarrow

Increasing building insulation

External Thermal Insulation (ETI) plastic (PE, EPS, PIR. etc)

RT 2012 and 2020

Limiting the thermal bridges between environment and building interior space

Increasing the fuel mass

Objective

- Describe the thermal decomposition process of ETI elements at small-scale
- Characterize the flame-façade interaction and propagation at intermediate-scale
- Studying some flame retardant coating for the fire protection and building a digital model which can be used in large scale

• At the lab-scale:

Investigation of thermal decomposition of ETI by TGA-FTIR, DSC and Hot disc.

- New insulation material is developed by introducing flame retardants.
- At the intermediate-scale:

A test bench, with a horizontal and rotational motion, is developed to study the fire-façade interaction under controlled heat condition.

• A numerical model of bench test is developed in COMSOL Multiphysics.

External Thermal Insulation (ETI)

Constitution of coating – Analyse XRF

Fig.1 XRF spectrum of base coating

(1) TESTAT SMALL-SCALE

EPS		Finition	Step1	Step2
E_a	177,619 kJ/mol	E_a	79,901 kJ/mol	356,130 kJ/mol
Log(PreExp)	11,996 Log(1/s)	Log(PreExp)	4,988 Log(1/s)	16,782 Log(1/s)
n	1,184	n	2,491	2,252
heta	1,004	heta	0,463	0,536

Fig.3 TG fit curves of EPS in air

Fig.4 TG fit curves of final render in air

Fig.5 Comparison of TG tested and TG calculated

Step	Enthalpy (J/g)	Onset Temperature(°C)	Mass Loss(%)
М	160.8	$T_{i} = 44$	-
		T _f = 125	
1	-603.1	387.3	98.22

Step	Enthalpy (J/g)	Onset Tenperature(°C)	Mass Loss(%)
1	-98.48	184	6.17
2	-82.16	395.7	15.56
3	-438.8	750.1	16.37

Fig.6 STA curves of EPS in 10K/min in nitrogen

Fig.7 STA curves of ETI in 10K/min in nitrogen

Université de Lille

Curve of thermal conductivity k

Fig.8 k curve of base coating versus time

Fig.9 k curve of finishing coating versus time

2) TEST BENCH

The lower edge of facade and the radiator as well as the igniter are at the same level – External heat source scenario

Thermal couple

Université de Lille

Measurement of test bench

Heat flux calibration

Temperature monitoring

IR Camera

RésoFeux SCIENCES DES INCENDIES Fire test of ETI STO – 0°,10cm, 43.2 kW/m²

Finishing coating Base coating

EPS

Cement board

Discussion of flame retardant application

APP 766 – Base APP

➢ Mixture of finishing coating and FR

ADEKA – Base piperazine phosphate

- > Intumescent painting FLAMEOFF
- > Adding a FR layer **FLAMEOFF**
- Blending expandable graphite in the finishing coating

Time (s)

front face and back face

Time (s)

NUMERICAL SIMULATION

L Université de Lille

Simulation – Model Stalter*

In the pyrolysis reaction, the polymer mass is consumed and produces a fraction ϑ of gas.

Polymer
$$\stackrel{k_0}{\rightarrow} \theta \cdot Gas + (1 - \theta) \cdot Char$$

tive The reaction rate of polymer mass consumption :

The rate constant for pyrolysis, k_0 , is described by the Arrhenius law :

$$k_0 = A_0 \cdot exp\left[\frac{-E_{A0}}{R \cdot T}\right]$$

 A_0 , E_{A0} and n can be investigated using TGA

In reality, x_2 would move to the left. By simplification, assuming that the polymer zone (x_2-x_1) is constant. So concentration (or density) changes over time.

$$r_p = \frac{\partial c_p}{\partial t} = -k_0 \cdot c_p$$

* Jr, David L Statler, and Rakesh K Gupta. "A Finite Element Analysis on the Modeling of Heat Release Rate, as Assessed by a Cone Calorimeter, of Char Forming Polycarbonate," n.d., 7.

۲

• The mass balance of the gas during pyrolysis:

$$r_{G^{\circ P}} = \frac{\partial c_{G}}{\partial t} - D_{poly} \cdot \frac{\partial^{2} c_{G}}{\partial x^{2}} = \theta \cdot k_{0} \cdot c_{p}$$
$$\frac{\partial c_{G}}{\partial t} - D_{char} \cdot \frac{\partial^{2} c_{G}}{\partial x^{2}} = 0$$

• The heat balance in polymer:

 $\rho_{poly} \cdot Cp_{poly} \cdot \frac{\partial T}{\partial t} - k_{poly} \cdot \frac{\partial^2 T}{\partial x^2} = -\Delta H_0 \cdot k_0 \cdot c_p + \Delta H_e$

• The heat balance in char:

$$\rho_{char} \cdot Cp_{char} \cdot \frac{\partial T}{\partial t} - k_{char} \cdot \frac{\partial^2 T}{\partial x^2} = 0$$

• Heating condition in surface:

$$\dot{Q}_{surface} = \dot{Q}_{heater} + \dot{Q}_{complémentaire} - h \cdot (T - T_{atm})$$

• Heat realease rate (HRR)

$$HRR = \Delta H_1 \cdot \left(-\frac{\partial c_G}{\partial x} \right) \Big|_{surface} \cdot D_{char}$$

Conversion rate Polymer $\stackrel{k_0}{\rightarrow} \theta \cdot Gas + (1 - \theta) \cdot Char$

$$\theta_{poly} = \frac{c_{vg} - c}{c_{vg} - c_{final}}$$

Université de Lille

Results of simulation **TECOMSOL**

Fig.13 Distribution of heat flux on facade Fig.14 Simulated EPS Concentration at 200s

Conclusion

- An original test bench at intermediate scale is introduced, equipped with a plane radiator movable horizontally and rotationally, to study the thermal decomposition and the flame propagation.
- The new insulation coating by adding FlameOFF or Expandable graphite works well in heat protection. Although, for EG, the mechanical properties of resulting char should be improved.
- With kinetic parameters investigated in small-scale, it is possible to define a pyrolysis model in calculation and using digital simulation, which contribute to understanding the observed phenomena.

THANK YOU

