

Simulations numériques des incendies avec le logiciel de calcul ISIS

S. Suard

IRSN/DPAM/SEMIC

Laboratoire d'étude de l'Incendie et de développement de

Méthodes pour la Simulation et les Incertitudes

GDR Incendies, faculté des sciences de Corte, 6-7 juin 2007

La problématique : Les feux en milieu confiné et ventilé (naturelle et/ou mécanique)

IRSN

- - 2/24

Approche adoptée par l'IRSN

- > Modélisation simplifiée (à zones) ou détaillée (3-D) des locaux
- Modélisation simplifiée (1-D) du réseau de ventilation avec lois de comportement des équipements du réseau et critères de dysfonctionnement des équipements de sectorisation

Le code à champs ISIS (Incendie SImulé pour la Sûreté)

- Écoulements incompressibles (Navier-Stokes)
- > Écoulements incompressibles et dilatables (N-S + enthalpie + ρ T = cte)
- > Écoulements à bas nombre de Mach (N-S + enthalpie + $P_{th} = \rho RT$)

- > Modèle de turbulence à 2 équations de type RANS :
 - ✓ Énergie cinétique turbulente (k)
 - \checkmark Taux de dissipation de l'énergie (ϵ)
 - ✓ Prise en compte des effets de gravité
 - ✓ Loi de paroi analytique

Combustion turbulente pilotée par le mélange turbulent
modèle Eddy Break-up (Magnussen et Hjertager)
modèle PDF (Probability Density Function)

- Transferts radiatifs
 - ✓ modèle simplifié de Markstein

> Aéraulique des locaux

Détermination :

✓ des débits d'admission et d'extraction

 \checkmark de la pression thermodynamique du local

Méthodes Numériques

- Discrétisation des équations de Navier-Stokes par la méthode des éléments finis $(\widetilde{Q}_1 - P_0)$
- Discrétisation des équations de transport de scalaire par la méthode des volumes finis
- > Schémas d'approximations spatiales du 1^{er} et du 2nd ordre
- > Schéma d'intégration en temps semi-implicite
- > Librairies parallèles, code testé sur 30 processeurs

□ ISIS : un applicatif de la plate-forme PELICANS

programmation très concise

- - 8/24

□ Bibliographie

- F. Babik, T. Gallouët, J.-C. Latché, S. Suard, D. Vola, On two fractional step finite volume and finite element schemes for reactive low Mach number flows, FVCA4, Marrakech, 2005.
- [2] S. Suard, L. Audouin, F. Babik, L. Rigollet, J.-C. Latché, Verification and Validation of the ISIS CFD code for fire simulation, ISO workshop on assessment of calculation methods for FSE, San-Antonio, 2006.
- [3] T. Gallouët, R. Herbin, J.-C. Latché, Analysis of a finite volume scheme for the P1 radiative transfer model, soumis, 2007.
- [4] T. Gallouët, L. Gastaldo, R. Herbin, J.-C. Latché, An unconditionnally stable pressure correction scheme for compressible barotropic Navier-Stokes equations, soumis, 2007.

A rédiger en 2007 :

- [5] T. Gallouët, J.-C. Latché, S. Suard, On the finite volume discretization of some simple models for chemical species transport in reactive flows.
- [6] D. Vola, F. Babik, J.-C. Latché, A L2-stable finite-volume-like discretization of the advection operator for non-conforming finite element flow solvers.
- [7] D. Vola, F. Babik, S. Suard, J.-C. Latché, A well-balanced discretization of the forcing term for non-conforming finite element flow solvers.

IRSN

Vérification et Validation du code

- Les deux grands principes nécessaires pour évaluer la crédibilité d'une simulation numérique sont la vérification et la validation (V&V). Méthodologies développées par le DoD et l'AIAA
- La vérification décrit le processus déterminant la précision de la simulation relative à un modèle conceptuel
- La validation compare la précision de la solution d'une simulation par rapport à une réalité.

Phases of Modeling and Simulation

[Schlesinger, AIAA,...]

Processus de Vérification

Vérification avec une solution analytique :

La solution du système d'équations à résoudre est connue analytiquement. L'écoulement est généralement laminaire et incompressible.

Vérification avec une solution manufacturée :

Cette méthode présente l'avantage de pouvoir vérifier chaque équation aux dérivées partielles implémentées dans le code.

Vérification avec un benchmark numérique :

Les solutions du benchmark doivent être publiées dans la littérature. Le problème physique simple, généralement bi-dimensionnel et laminaire est résolu par plusieurs codes de calcul possédant chacun des méthodes numériques performantes et différentes.

Matrice de Vérification

- Convection d'un créneau
- □ Advection-diffusion
- Conduction dans les murs
- □ Écoulement de Poiseuille
- Cavité entraînée
- □ Vortex de Green-Taylor
- Navier-Stokes à masse volumique variable
- Convection naturelle
- □ Transport radiatif
- □ Transport turbulent
- Couplage à un réseau de ventilation
- •

Exemple : Cavité chauffée différentiellement à haut nombre de Rayleigh

Écoulement stationnaire, laminaire et faiblement compressible
Domaine de calcul : cavité [0,L] × [0,L]

Paramètres numériques :

> Maillage uniforme : 40×40 , 80×80 , ..., 560×560

Intégration en temps	$\Delta t = 0.05 \text{ s}$		
Temps final	50 s (critère de convergence < $10^{-5} \Delta t$)		
Algorithme	semi-implicite		
Discrétisation temporelle	emporelle Premier ordre, Euler		
Discrétisation spatiale	NS : formulation éléments-finis		
	Énergie : approximation hybride		

Résultats: nombre de Nusselt moyen, pression thermodynamique

$$Nu(y) = \frac{L}{k_0(T_h - T_c)} k \frac{\partial T}{\partial x} \Big|_w$$
 et $\langle Nu \rangle_h + \langle Nu \rangle_c = 0$

Température

Fonction de courant

Maillage	80 x 80	240 x 240	400 x 400	560 x 560
Nombre de Nusselt	8.83e-03	1.24e-03	4.89e-04	2.59e-04
Pression	9.89e-03	1.4e-03	5.99e-4	3.60e-04

Erreur relative pour le nombre de Nusselt moyen et la pression thermodynamique

Processus de Validation

Identification et quantification des erreurs et des incertitudes du modèle conceptuel et informatique

La précision de la solution numérique est obtenue en comparant les résultats des simulations à des données expérimentales

Chaque phase du processus de validation représente un niveau différent de complexité (couplage des phénomènes physiques, géométrie, échelle de temps,...)

- - 16/24

IRSN

Matrice de Validation

IRSN

- - 17/24

Incendie en milieu confiné - Essai LIC1.14

Configuration

- local de 405 m³ (9 m x 6 m x 7.5 m)
- temps : 35 min
- foyer d'éthanol (1m²) :
 - puissance : 563 kW,
 - débit massique : 0.022kg/sec/m²
 - temps : 25 min
- armoire en acier, conduction 1D
- murs en béton, conduction 1D

Équations résolues :

- ⇒ Reynolds Averaged Navier-Stokes
- \Rightarrow Enthalpie
- ⇒ Fraction massique de combustible
- ⇒ Fraction de mélange
- ⇒ Conduction dans les parois
- ⇒ équation de Bernoulli

-

 \Rightarrow équation de la masse (P_{th})

Validation : expérimentale

IRSN

- ⇒ pression thermodynamique
- ⇒ température du local
- ⇒ débit

Maillage :

- 119 200 nœuds pour les scalaires (p, h, k, ϵ , Y_F, z)
- 365 000 nœuds pour la vitesse

 \Rightarrow 1 million d'inconnues

Évolution temporelle de la pression thermodynamique du local Évolution temporelle du débit massique à l'admission

Évolution temporelle de la température (3 mètres au dessus du foyer)

Évolution temporelle de la température (3 mètres au dessus du foyer) temps : 500 s – 1500 s

Résultats de simulations : Essai PRISME-SOURCE

Configuration

- Iocal de 120 m³ (5 m x 6 m x 4 m)
- parois et plancher en béton
- plafond en Thermipan
- temps des essais : 6 min 1 heure
- foyer : TPH (dodécane 0,4 m²)
- taux de renouvellement : 1,5 (D3) 4,7 (D1)

Équations résolues :

- ⇒ Reynolds Averaged Navier-Stokes
- ⇒ Enthalpie
- ⇒ Fraction massique de combustible
- ⇒ Fraction de mélange
- \Rightarrow Conduction dans les parois
- ⇒ équation de Bernoulli

 \Rightarrow équation de la masse (P_{th})

- Validation : expérimentale
- ⇒ pression thermodynamique du local

IRSN

- ⇒ températures dans le local
- ⇒ débits

Condition limite de type Bernoulli pour l'admission et l'extraction

- - 23/24

Évolution temporelle du débit à l'admission

Évolution temporelle du débit à l'extraction

dans le quart sud-est de local

IRSN

- - 25/24

Essai PRISME-DOOR Configurations

- 2 locaux ventilés, séparés par une porte
- Taux de ventilation : 4,7 r/h (560 m³/h)
- Surface de foyer variable : 0,4 m² (PRS-D3) et 1 m² (PRS-D6)

IRSN

Résultats expérimentaux :

- profils de température (gaz et parois)
- évolution de la pression et des débits d'admission et d'extraction
- flux thermiques aux parois

Résultats numériques

Gradients de température dans les deux locaux

Résultats numériques

• Évolution du champ de température

Développements en cours

> Obtenir une simulation prédictive d'un feu de nappe :

- 1. en atmosphère libre
- 2. en milieu confiné et ventilé
- Nécessitée d'un couplage entre les phases gazeuses et liquides (ou solides) pour s'affranchir de la condition limite « débit masse de combustible »

Meilleur estimation des flux aux interfaces liquide/gaz, solide/gaz

⇒ Modèle de pyrolyse + Modèle de turbulence (intensité turbulente faible, fermetures au second ordre)

Modélisation plus fine des transferts radiatifs :

Actuellement :

- milieux à grande épaisseur optique
- « milieu gris »
- ⇒ Modèles valides sur une large gamme d'épaisseur optique
- \Rightarrow Discrétisation angulaire
- \Rightarrow Calcul de l'absorption du gaz en fonction des concentrations locales
- Modélisation plus fine de la production de suies Actuellement :
 - fraction de suies déterminées à partir d'un % donné par l'utilisateur
 - \Rightarrow Prise en compte de la formation des suies
 - \Rightarrow Modèles à 1 ou 2 équations
- Modélisation LES en vue d'un couplage RANS/LES

□ Raffinement local adaptatif

- - 31/24

□ Écoulements compressibles :

écoulement dans un canal avec un obstacle rectangulaire

□ Écoulements diphasiques compressibles : colonne à bulles, test de Becker 2D

HISIS-alpha : (/home/semar/suard/Pro	gram/Isis_EF/IHM/samples/TurbulentFlame/DoRun/data.pd	el)		• • ×	
	C T Cst b 5 2				
P- 🗖 ISIS	Mandatory				
time_managment	minutory		Double	F 29	
problem_description Dinitial values				- 47 (730	
- Dhysical_properties	ruei_mass_fraction		Double		
- 🗋 density	enthalpy 0.0		Double	C)	
- D laminar_viscosity	velocity 0.0 0.0		DoubleVector	17	
specific_neat	hydrodynamic_pressure 0.0		Double	7	
- Species_diffusivity			Double	F39	
- Conductivity					
P C macro_boundary_conditions	epsilon (\$DS_EPS0)		Double		
← BC#inlet1					
← 📑 BC#inlet3					
← 📑 BC#wall					
BC#symmetry					
e Carbustion					
- Chemistry					
- 🗋 injection			otour		
←		Guide utilis	aleur		
	Optional				end of the she balanting
P _ post_processing		I unatrice de	verific	cati	on et de validation
- D formats					
Commercial_parameters		Documenta	ation (les	modéles physiques
Convective_scheme					
- Save_for_restarting		Documenta	ation c	1es	méthodes numériques
🕈 🛄 meshing				100	moundade manneniquee
CE_Mesning		Graphic Lls	or Int	orf	
				CIIC	
Cherk Console					
0 error					
]	

Mise sous licence libre (type Cecill) :

- > Début 2008 mais mise à disposition anticipée possible
- Objectif : renforcer notre partenariat avec les organismes de recherche

> ISIS : un code de calcul CFD générique open source

- documenté,
- qualifié,
- adapté à la problématique de l'incendie en milieu industriel,
- permettant une implémentation pérenne des modèles physiques,

IRSN

assurant un suivi de l'historique et une gestion des versions.

