
 

ESIA – Ecole des Sciences de l’Incendie et Applications – Obernai, 27 mai au 1er juin 2018 

- 1 - 

Chapitre 9. 
OUTILS DE 
SIMULATIONS 
POUR L’INCENDIE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Arnaud Trouvé 

Department of Fire Protection Engineering 

University of Maryland, College Park 20742 (USA) 

 



 

- 2 - 

Workshop on CFD-Based Fire Modeling 

Objectives 

The purpose of this workshop is to: 

 Provide an introduction to fire modeling based on the Computational Fluid Dynamics 

(CFD) approach 

 Provide an introduction to the Fire Dynamics Simulator (FDS) developed by the US 

National Institute of Standards and Technology (NIST) 

o The official FDS website can be found at https://pages.nist.gov/fds-smv/ 

 Take a first-time user approach to FDS 

o Walk through the different steps involved in setting up and running FDS 

 Simulate with FDS a series of simple test problems in order to illustrate the performance 

and functionalities of the software and also discuss some of the main technical difficulties 

encountered at the user level  

o Study the effects of computational grid resolution (for both the gas phase solver and 

the solid phase solver) and of angular resolution (for the radiation solver) 

Additional reading material 

 McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K., “Fire 

Dynamics Simulator – User’s Guide,” NIST Special Publication 1019, Sixth Ed., National 

Institute of Standards and Technology, Gaithersburg, MD, USA, 2017.  

 McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Vanella, M., Weinschenk, C., 

Overholt, K., “Fire Dynamics Simulator (Version 6) – Technical Reference Guide, 

Volume 1: Mathematical Model; Volume 2: Verification; Volume 3: Validation; Volume 

4: Configuration Management” NIST Special Publication 1018, Sixth Ed., National 

Institute of Standards and Technology, Gaithersburg, MD, USA, 2017. 

o The FDS documentation is located in the FDS/FDS6/Documentation/ folder of the 

local directory where FDS is installed and is also available at 

https://pages.nist.gov/fds-smv/ 

Additional FDS examples 

 FDS provides an extensive library of example cases that serve to illustrate its capabilities 

and can be conveniently used to become a proficient user of the software 

o The FDS library is located in the FDS/FDS6/Examples/ folder of the local directory 

where FDS is installed 

1 Introduction of FDS: FirsTry.fds 

The Fire Dynamics Simulator (FDS) is an advanced CFD-based fire model developed by the 

National Institute of Standards and Technology and made available as free, open-source software 

on the GitHub website (https://github.com/firemodels/fds). We assume here that FDS has been 

successfully downloaded and installed on a local computer. We propose in this section a discussion 

https://pages.nist.gov/fds-smv/
https://pages.nist.gov/fds-smv/
https://github.com/firemodels/fds


 

ESIA – Ecole des Sciences de l’Incendie et Applications – Obernai, 27 mai au 1er juin 2018 

- 3 - 

of an example case called FirstTry. The FDS input file is an ASCII text file called FirstTry.fds (this 

file will be provided at the Workshop). We review below the main features of FirstTry.fds. 

1.1 Computational Mesh 

&MESH IJK=50,40,30, XB=0.0,5.0,0.0,4.0,0.0,3.0 / 

This statement produces a uniform computational mesh with cubic-shaped cells of 10-cm size, 

Δ𝑥 = Δ𝑦 = Δ𝑧 = 0.1 m. The values of Δ𝑥, Δ𝑦 and Δ𝑧 define the computational mesh resolution 

used in the FirstTry simulation, along the x-, y- and z-directions respectively. 

The choices made for the computational mesh (also called computational grid) are critical to the 

quality and accuracy of a simulation. They are also directly controlling the computational cost. 

Fine-grained simulations are simulations that use a large number of computational cells; fine-

grained simulations thereby provide high spatial resolution at the cost of long computational times. 

In contrast, coarse-grained simulations are simulations that use a small-to-moderate number of 

computational cells; coarse-grained simulations provide low spatial resolution with the benefit of 

short computational times. 

While guidelines do exist to assist the user in making suitable grid design choices, the choices are 

problem-dependent and guidelines tend to be difficult to generalize. As a matter of fact, CFD 

practitioners often work backward starting from an estimate of the time left before a given deadline 

and then designing a computational grid that will lead to computational times that are consistent 

with the available computing power and the project schedule. While this is an approach that makes 

practical sense, it is important for CFD users to understand how close or how far their grid 

resolution choices might be from a suitably-designed computational grid. In fact, CFD projects are 

always invited (and often required) to provide both a discussion of grid quality and a justification 

of the choices that were made for grid resolution. 

Grid design may be understood as a process based on a comparison of length scales. It starts first 

with the identification of relevant physical length scales, noted L, in a given fire scenario and then 

finishes with a comparison of those length scales to the computational mesh resolution, as measured 

by the values of Δ𝑥, Δ𝑦 and Δ𝑧. The rule of thumb for grid design consists in providing 10 grid 

cells per relevant physical length scale: (𝐿/Δ𝑥) ≥ 10, (𝐿/Δ𝑦) ≥ 10, (𝐿/Δ𝑧) ≥ 10. The idea is that 

if this criterion is not met, the physics associated with L will not be correctly captured by the 

simulation, which will lead in turn to a loss of accuracy. In this argument, L is a generic notation 

that designates characteristic length scales associated with flame features, flow features, 

compartment vents, objects, etc. For instance, the list of possibly-relevant physical length scales 

for any fire scenario includes: the flame length Lf, the fire plume thickness PL, the smoke layer 

depth (H-zD), the thicknesses of wall boundary layers BL, the dimensions of vents, HO and WO, the 

dimensions of the fuel source(s), D, etc. 

The FirstTry example corresponds to a simple compartment fire scenario featuring a prescribed 

fuel source, a flame and a doorway. We now review the ability of the selected computational grid 

to resolve these respective features. The fuel source is a floor-level square-shaped vent with a size 

D = 0.6 m: we have (𝐷/Δ𝑥) = (0.6/0.1) = 6 and (𝐷/Δ𝑦) = (0.6/0.1) = 6, which means that the 

spatial resolution of the vent flow is only marginal (𝐷/Δ𝑥) and (𝐷/Δ𝑦) are smaller than 10). Next, 

we turn to the flame zone. The flame length may be estimated using the classical correlation due to 

Heskestad: 𝐿𝑓 = (0.235 × 𝑄̇2/5 − 1.02 × 𝐷𝑓), where 𝑄̇ is the heat release rate of the fire (in units 

of kW) and Df the effective diameter of the fuel source. We use 𝑄̇ = 200 kW, 𝐷𝑓 =

(4 × (0.6 × 0.6)/𝜋)0.5 ≈ 0.68 m and get 𝐿𝑓 ≈ 1.26 m; we then have (𝐿𝑓/Δ𝑧) = (1.26/0.1) =

12.6, which means that the spatial resolution of the flame is adequate ((𝐿𝑓/Δ𝑧) is greater than 10), 

at least in the vertical direction (the flame thickness in the horizontal plane is of order D and the 
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spatial x- and y-resolution of the flame is only marginal). Finally, we consider the doorway vent. 

The door features a height HO = 2 m and a width WO = 0.8 m: we have (𝐻𝑂/Δ𝑧) = (2/0.1) = 20 

and (𝑊𝑂/Δ𝑧) = (0.8/0.1) = 8, which means that the spatial resolution of the vent flow is good in 

the vertical z-direction but only marginal in the y-direction. 

Overall, the computational grid selected in the FirstTry simulation corresponds to an acceptable 

choice, provided that the simulation is aimed at extracting global features from the fire scenario, 

for instance the averaged outflow rate of smoke or the bulk smoke layer temperature. The 

computational grid would probably not be acceptable (and would have to be refined) if more 

detailed information was needed, for instance heat fluxes on a flammable object located inside the 

compartment and that may experience secondary ignition. This discussion suggests that the 

evaluation of the quality of a computational grid used in a given simulation is also related to the 

objectives of that particular simulation. 

Note also that the estimates of the quality of the grid presented above should be considered as good 

starting points and that these starting points need to be typically supported by what is called a grid 

convergence study. A grid convergence study consists in simulating the same problem with 

increasingly refined computational grids (typically by a factor of at least 4 in each direction) and 

showing that beyond a certain resolution level, the solution becomes independent of changes in the 

grid. While highly desirable, the task of performing a grid convergence study is generally difficult 

and computationally expensive: when one increases the number of grid cells by a factor 2 in each 

direction, the computational cost is increased by a factor of approximately 16 (see Section 1.2 

below). Thus, a grid convergence study that considers a first-level grid with given choices of 

(Δ𝑥, Δ𝑦, Δ𝑧), a second-level grid with (Δ𝑥/2, Δ𝑦/2, Δ𝑧/2), and a third-level grid with 

(Δ𝑥/4, Δ𝑦/4, Δ𝑧/4) will include 3 simulations and the third-level grid simulation will be 

approximately 256 times more expensive that the first-level grid simulation. 

1.2 Computational Cost 

The computational cost of a simulation scales approximately linearly with the total number of grid 

cells, noted 𝑁𝐺𝐶, 𝑁𝐺𝐶 = (𝑁Δ𝑥 × 𝑁Δ𝑦 × 𝑁Δ𝑧), where 𝑁Δ𝑥 (𝑁Δ𝑦, 𝑁Δ𝑧) is the number of cells in the x- 

(y-, z-) direction. The computational cost also scales approximately linearly with the total number 

of steps, noted 𝑁Δ𝑡, used to advance the numerical solution in time. Because of numerical stability 

constraints, temporal resolution is directly controlled by spatial resolution: a grid that is twice finer 

(𝑁Δ𝑥, 𝑁Δ𝑦 and 𝑁Δ𝑧 are multiplied by a factor 2) will require time steps that are twice smaller (𝑁Δ𝑡 

is also multiplied by a factor 2). 

We can write in a loose fashion: CPU cost = 𝐶 × (𝑁Δ𝑥 × 𝑁Δ𝑦 × 𝑁Δ𝑧) × 𝑁Δ𝑡, where C is a 

computer-machine-dependent coefficient. When one increases the number of grid cells by a factor 

2 in each direction, 𝑁𝐺𝐶 is increased by a factor 8; 𝑁Δ𝑡 is increased by a factor 2; and the 

computational cost is increased by a factor of (approximately) 16. 

1.3 Prescribed Fuel Mass Loss Rate 

&OBST XB=2.2,2.8,1.7,2.3,0.0,0.1, 

SURF_IDS='BURNER','INERT','INERT' / 

&SURF ID='BURNER', HRRPUA = 555.55, RAMP_Q='fireramp' / 

&RAMP ID='fireramp', T= 0.0,  F=0.0  / 

&RAMP ID='fireramp', T= 10.0, F=0.026 / 

… 
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&RAMP ID='fireramp', T=440.0, F=0.004 / 

&RAMP ID='fireramp', T=450.0, F=0.000 / 

&RAMP ID='fireramp', T=600.0, F=0.0 / 

In the FirstTry example, the fuel mass loss rate is user-prescribed using the HRRPUA statement. 

We now present a brief description of the FDS set-up. The fuel source is a floor-level square-shaped 

vent with a surface area 𝐴𝑓 = (0.6 × 0.6) m2. The fuel is methane. The combustion model in FDS 

uses a global combustion equation and the heat of combustion per unit mass of fuel is ∆𝐻𝑓 =

49.6746591 MJ/kg (this value can be found in the FDS output file called FirstTry.out; open this 

file and look for the METHANE keyword). By definition, we have: HRRPUA = 𝑚̇𝑓
′′ × ∆𝐻𝑓, where 

HRRPUA is the “Heat Release Rate Per Unit Area” (in units of kW/m2) and 𝑚̇𝑓
′′ the fuel mass loss 

rate per unit fuel source area (in units of kg/s/m2); this expression shows that the HRRPUA 

statement in the FDS input file is simply a way to prescribe the fuel mass loss rate. We can write 

the fuel mass loss rate (integrated across the fuel source area) as: 𝑚̇𝑓 = 𝑚̇𝑓
′′ × 𝐴𝑓 =

(HRRPUA/∆𝐻𝑓) × 𝐴𝑓. If the compartment is well-ventilated, all the fuel released by the fuel source 

gets consumed by the flame and the fire size (i.e., the heat release rate) is: 𝑄̇ = 𝑚̇𝑓 × ∆𝐻𝑓 =

HRRPUA × 𝐴𝑓. 

In the FirstTry example, we have: 

𝑚̇𝑓 =
HRRPUA

∆𝐻𝑓
× 𝐴𝑓 =

555.55 × 103

49.6746591 × 106 
× (0.6 × 0.6) = 4.026 × 10−3 kg/s 

and 

𝑄̇ = HRRPUA × 𝐴𝑓 = (555.55 × 103) × (0.6 × 0.6) = 200 kW 

These values correspond to the fully-developed phase of the fire. This fully-developed phase is 

preceded by a growth phase and followed by a decay phase during which the fuel mass loss rate is 

time-dependent. In FDS, the time variations of 𝑚̇𝑓 and 𝑚̇𝑓
′′ are specified through the RAMP 

functionality. See the FDS User’s Guide for details on the RAMP functionality. 

1.4 Solid Wall Temperatures 

&SURF ID = 'SIDE_WALL', 

MATL_ID = 'CONCRETE', 

THICKNESS = 0.15 / 

&SURF ID = 'FLOOR', 

MATL_ID = 'CONCRETE', 

THICKNESS = 0.15 / 

&SURF ID = 'CEILING', 

MATL_ID = 'CONCRETE', 

THICKNESS = 0.15 / 

&MATL ID = 'CONCRETE', 

CONDUCTIVITY = 0.125 

DENSITY = 525. 
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SPECIFIC_HEAT = 1.05 / from CFAST database 

These statements define the thermal properties of the solid walls. These properties are needed in a 

conjugate heat transfer calculation, as explained below. 

An important component in fire dynamics is the heat transfer that occurs between the flame, the 

smoke layer and the solid walls inside the fire compartment. Heat transfer into, or out of the solid 

walls is controlled in part by the wall surface temperatures. In CFD modeling, the wall surface 

temperatures are calculated as solutions of a coupled gas-solid heat transfer calculation (called a 

conjugate heat transfer calculation) in which gas-to-solid heat fluxes drive heat accumulation inside 

the solid walls and solid conduction describe heat transport inside the walls. The simulation of solid 

heat conduction requires the values of the heat conductivity, mass density and heat capacity of the 

walls. 

1.5 Spatial Coordinates and Computational Grid Resolution 

&OBST XB=2.2,2.8,1.7,2.3,0.0,0.1, 

SURF_IDS='BURNER','INERT','INERT' / 

&VENT XB=0.0,0.0,1.6,2.4,0.0,2.0, SURF_ID='OPEN' / Doorway 

It is important to emphasize that the computational grid resolution defines the prism through which 

a CFD solver will interpret the geometry of a given fire scenario. In the FirstTry simulation, the 

grid resolution is 10 cm with grid lines uniformly distributed every 10 cm from the boundaries of 

the computational domain. The vents and obstructions that are introduced in the FDS input file need 

to conform to the grid lines: in other words, the spatial coordinates of the boundaries of vents and 

obstructions need to match grid line locations. This explains why the spatial coordinates of the 

VENT and OBST statements in FirstTry.fds are specified as multiples of 0.1 m. Note that if a vent 

or an obstruction is specified with coordinates that are not grid-conforming, FDS will introduce a 

correction and adjust the dimension and/or location of the corresponding vent or obstruction, and 

thereby turn it into a grid-conforming object. This modification may change the exact dimensions 

of the corresponding vent or obstruction. 

1.6 Importance of Order of Statements 

&VENT XB=0.0,0.0,1.6,2.4,0.0,2.0, SURF_ID='OPEN' / Doorway 

&VENT MB='XMIN', SURF_ID = 'SIDE_WALL' / 

The order of the statements in an FDS input file is sometimes important. This is the case when FDS 

finds conflicting statements. For instance, the first statement above produces an open boundary in 

the planar (doorway) region defined by x = 0, 1.6 ≤ y ≤ 2.4 m and 0 ≤ z ≤ 2 m. The second statement 

produces a wall boundary across the entire x = 0 plane. These two statements disagree in the 

doorway region and because of the conflict, FDS resorts to a default rule for conflict resolution; the 

default rule in FDS is to give preference to the first statement. Note that if the order of the two 

statements above was reversed, the doorway region would be treated (incorrectly) as a closed wall. 

1.7 Diagnostics 

&DEVC XB=0.0,0.0,1.6,2.4,0.0,2.0, QUANTITY='MASS FLOW +', ID='MFRp' / 

&DEVC XB=0.0,0.0,1.6,2.4,0.0,2.0, QUANTITY='MASS FLOW -', ID='MFRm' / 

One of the main responsibilities of CFD users is to include relevant diagnostics in the input file so 

that useful information may be extracted from a given simulation. In FDS, this is generally 

accomplished by using the DEVC functionality. (Note that Smokeview provides animations and 
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graphics that provide valuable visualization and insight but remain essentially qualitative. In 

contrast, the DEVC functionality allows for quantitative diagnostics.) The DEVC functionality is 

illustrated in the FirstTry example by introducing two flow rate diagnostics that record the time 

variations of the mass inflow rate and mass outflow rate across the doorway vent. See the FDS 

User’s Guide for details on the DEVC functionality. 

1.8 Results from FirstTry 

We present below a sample of the results extracted from the simulation of FirstTry.fds. Figure 1.1 

presents the time variations of the fuel mass loss rate (MLR). Since MLR is user-prescribed (see 

Section 1.3), the curve presented in Fig. 1.1 is only a consistency check, i.e., a check that the MLR 

variations have been correctly specified in the FDS input file. Figure 1.1 shows the prescribed 

sequence of the MLR evolution characterized by a growth phase (up to approximately 80 s), a fully-

developed phase (from 80 s until 300 s) and a decay phase (with burnout occurring at approximately 

430 s). 

 
Figure 1.1: Time variations of the fuel mass loss rate. This plot is extracted from the output file 

called FirstTry_hrr.csv. 

 
Figure 1.2: Time variations of the heat release rate. This plot is extracted from the output file called 

FirstTry_hrr.csv. 
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Figure 1.3: Time variations of the mass inflow (blue) and outflow (red) rates at the doorway. This 

plot is extracted from the output file called FirstTry_devc.csv. 

Figure 1.2 presents the corresponding time variations of the heat release rate (HRR). As expected 

from the discussion in Section 1.3, during the fully-developed phase, the fire size reaches an 

average value of 200 kW. The (small) fluctuations in HRR are due to unsteadiness associated with 

turbulent motions. 

Figure 1.3 presents the time variations of the mass inflow rate, 𝑚̇𝑖𝑛, and mass outflow rate, 𝑚̇𝑜𝑢𝑡, 

at the doorway. Figure 1.3 shows that after an initial transient phase, a steady-state regime is 

achieved during which 𝑚̇𝑖𝑛 ≈ 𝑚̇𝑜𝑢𝑡. The doorway flow rates are driven by the heat release process 

and therefore the variations of 𝑚̇𝑖𝑛 and 𝑚̇𝑜𝑢𝑡 follow those of the fire size. 

2 Verification Test of Mass Conservation: TestMass.fds 

We now turn to a discussion of a test case called TestMass aimed at verifying global mass 

conservation in FDS and aimed also at providing an example of a grid convergence study. The FDS 

input file is an ASCII text file called TestMass.fds (this file will be provided at the Workshop). We 

review below the main features of TestMass.fds. 

2.1 Main Features 

The example case TestMass is similar to the FirstTry case presented in the previous section. The 

configuration features a reduced-scale cubic-shaped compartment of size 1 m exposed to a 200-kW 

(methane-fueled) fire and featuring a vertical vent (𝑊𝑂 = 𝐻𝑂 = 0.8 m). The simulation is run over 

a duration of 30 s with different levels of computational mesh resolution: 

&MESH IJK=40,40,40, XB=0.0,1.0,0.0,1.0,0.0,1.0 / Δ𝑥 = Δ𝑦 = Δ𝑧 = 0.025 m 

or 

&MESH IJK=20,20,20, XB=0.0,1.0,0.0,1.0,0.0,1.0 / Δ𝑥 = Δ𝑦 = Δ𝑧 = 0.05 m 

&MESH IJK=10,10,10, XB=0.0,1.0,0.0,1.0,0.0,1.0 / Δ𝑥 = Δ𝑦 = Δ𝑧 = 0.1 m 

&MESH IJK=5,5,5, XB=0.0,1.0,0.0,1.0,0.0,1.0 / Δ𝑥 = Δ𝑦 = Δ𝑧 = 0.2 m 

The main diagnostics are the mass inflow and outflow rates across the vertical vent: 

&DEVC XB=0.0,0.0,0.1,0.9,0.0,0.8, QUANTITY='MASS FLOW +', ID='MFRp'/ 

&DEVC XB=0.0,0.0,0.1,0.9,0.0,0.8, QUANTITY='MASS FLOW -', ID='MFRm'/ 

2.2 Results from TestMass 
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We present below a sample of the results extracted from the simulation of TestMass.fds. Figure 2.1 

presents the time variations of the mass inflow rate, 𝑚̇𝑖𝑛, and mass outflow rate, 𝑚̇𝑜𝑢𝑡, at the vertical 

vent. These results were obtained for Δ𝑥 = 0.025 m . Figure 2.1 shows that after an initial transient 

phase, a steady-state regime is achieved during which 𝑚̇𝑖𝑛 ≈ 𝑚̇𝑜𝑢𝑡. Note that this statement of mass 

conservation is written in a time-average sense and that it assumes that the fuel mass loss rate 

remains small (in all rigor, at steady state, we write 𝑚̇𝑖𝑛
̅̅ ̅̅ ̅ + 𝑚̇𝑓

̅̅ ̅̅ ≈ 𝑚̇𝑜𝑢𝑡
̅̅ ̅̅ ̅̅ , where the overbar denotes 

a time-average quantity and where we have 𝑚̇𝑓
̅̅ ̅̅ ≪ 𝑚̇𝑖𝑛

̅̅ ̅̅ ̅). 

  
Figure 2.1: Time variations of the mass inflow (dashed line) and outflow (solid line) rates at the 

doorway. This plot is extracted from the output file called TestMass_devc.csv. Simulation with 

𝛥𝑥 = 0.025 m. 

Figure 2.2 compares the values of 𝑚̇𝑖𝑛 and 𝑚̇𝑜𝑢𝑡 obtained in simulations with different levels of 

grid resolution. Using the concepts presented in Section 1.1, the relevant length scales of the 

problem are: the burner size D = 0.2 m; the flame length 𝐿𝑓 = (0.235 × 𝑄̇2/5 − 1.02 × 𝐷𝑓) ≈

1.73 m (note that in the present scenario, the flame length is larger than the ceiling height and the 

flame will therefore impinge on the ceiling); and the vent width and height, 𝑊𝑂 = 𝐻𝑂 = 0.8 m. 

Because we focus here on the flow rates at the vent, the most relevant length scales from this list 

are the dimensions 𝑊𝑂 and 𝐻𝑂, and we expect an accurate simulation of the vent flow provided 

that (𝑊𝑂/Δ𝑦) ≥ 10 and (𝐻𝑂/Δ𝑧) ≥ 10, or equivalently Δ𝑦 ≤ 0.08 m and Δ𝑧 ≤ 0.08 m. This 

discussion suggests that simulations with 𝛥𝑥 = 0.025 m and 𝛥𝑥 = 0.05 m are adequately resolved, 

whereas simulations with 𝛥𝑥 = 0.1 m and 𝛥𝑥 = 0.2 m are under-resolved. This analysis is 

consistent with the results displayed in Figure 2.2: while the numerical results obtained with 𝛥𝑥 =
0.1 or 0.2 m are sensitive to changes in grid resolution (which suggests that the corresponding 

solutions are strongly affected by numerical errors), the results obtained with 𝛥𝑥 = 0.025 or 

0.05 m seem to become independent of further grid refinement and the corresponding solutions can 

be considered as “grid-converged”. 
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 (a)    (b)  

Figure 2.2: Time variations of: (a) the mass inflow rate; (b) the mass outflow rate at the doorway. 

This plot is extracted from the output files called TestMass_devc.csv. Comparison between 

simulations performed with different levels of grid resolution: 𝛥𝑥 = 0.2 m (blue); 𝛥𝑥 = 0.1 m 

(orange); 𝛥𝑥 = 0.05 m (red); 𝛥𝑥 = 0.025 m (black). 

This example provides a simple illustration of the importance of grid resolution on the accuracy of 

a CFD simulation as well as a brief discussion of the classical approach for the assessment of grid 

quality based on a length scale analysis and a grid convergence study. 

3 Verification Test of Momentum Conservation: Poiseuille.fds 

We now turn to a discussion of a test case called Poiseuille aimed at verifying global momentum 

conservation in FDS in the context of a laminar flow. The FDS input file is an ASCII text file called 

Poiseuille.fds (this file will be provided at the Workshop). We review below the main features of 

Poiseuille.fds. 

3.1 Main Features 

The example case Poiseuille is a simple channel flow configuration. The configuration features 

laminar Poiseuille flow between two infinite parallel plates. The separation distance between the 

plate is 𝐻 = 0.1 m; the volume flow rate is prescribed and equal to 𝑄̇𝑓𝑙𝑜𝑤 = 6.67 × 10−5 m3/s (a 

small value selected so that the flow is laminar). The simulation is run over a duration of 200 s. 

The main relevant length scale in this problem is the separation distance H and we choose Δ𝑧 =
0.005 m or (𝐻/Δ𝑧) = 20. The streamwise length of the channel is 2 m (a large value selected so 

that the computational domain is long enough to include both an entry length region and a large 

region with fully-developed Poiseuille flow behavior). 

The inlet boundary condition at 𝑥 = 0 corresponds to a plug flow at the prescribed flow rate 𝑄̇𝑓𝑙𝑜𝑤: 

&SURF ID = 'INLET', VOLUME_FLOW=-0.0000667 / 

The minus sign in front of the value of 𝑄̇𝑓𝑙𝑜𝑤 is a sign convention that indicates the direction of the 

flow (the sign convention is to count outflow as positive and inflow as negative; see the FDS User’s 

Guide for details). 

The front and rear planes at 𝑦 = 0 and 𝑦 = 0.1 m correspond to “mirror” boundary conditions: 

&VENT MB='YMIN', SURF_ID = 'MIRROR' / 

&VENT MB='YMAX', SURF_ID = 'MIRROR' / 
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These boundary conditions are special symmetry conditions that impose zero normal velocity (𝑣 =
0) and zero normal gradients for tangent velocity components (𝜕𝑢/𝜕𝑦 = 𝜕𝑤/𝜕𝑦 = 0) and that help 

maintain two-dimensional flow. 

The main diagnostics are the streamwise variations of pressure along the channel: 

&DEVC XYZ=0.0,0.05,0.05, QUANTITY='PRESSURE', ID='localP0' / 

&DEVC XYZ=0.2,0.05,0.05, QUANTITY='PRESSURE', ID='localP1' / 

… 

&DEVC XYZ=2.0,0.05,0.05, QUANTITY='PRESSURE', ID='localP10' / 

Note that in FDS, “PRESSURE” denotes the aerodynamic component of pressure (in FDS, pressure 

is decomposed into the sum of a background component and a flow-induced perturbation, and 

“PRESSURE” refers to the flow-induced perturbation). There is no gravity in the present problem, 

the background component is therefore uniform and equal to its atmospheric value; under such conditions, 

“PRESSURE” indicates gauge pressure. See the FDS User’s Guide for details on the meaning of 

“PRESSURE” and the Technical Reference Guide for details on the pressure decomposition. 

3.2 Results from Poiseuille 

We present below a sample of the results extracted from the simulation of Poiseuille.fds. Figure 3.1 

presents the simulated streamwise variations of gauge pressure along the channel centerline. Figure 

3.1 also compares the simulated variations to the predicted variations given by the classical 

Poiseuille flow solution: 

∆𝑝(𝑥) =
12𝜇𝑄̇𝑓𝑙𝑜𝑤

𝐻3𝑊
× (𝑥𝑒𝑥𝑖𝑡 − 𝑥) =

12 × (1.82 × 10−5) × (6.67 × 10−5)

(0.1)3 × 0.1
× (2 − 𝑥) 

where  is the dynamic viscosity of ambient air, 𝜇 = 1.82 × 10−5 kg/m/s, W the y-dimension of 

the computational domain, 𝑊 = 0.1 m, and 𝑥𝑒𝑥𝑖𝑡 the x-length of the channel, 𝑥𝑒𝑥𝑖𝑡 = 2 m. The 

comparison is excellent (slight variations in the entry length region, at 𝑥 ≤ 0.3 m, are explained by 

the transition from plug flow to Poiseuille flow). 

This case provides a simple example of pressure losses in a channel flow and verifies the ability of 

FDS to correctly simulate the coupling between flow velocity and pressure. 

 
Figure 3.1: Spatial variations of pressure along the channel centerline. This plot is extracted from 

the output file called Poiseuille_devc.csv. Comparison between FDS results (black) and the 

analytical Poiseuille flow solution (red). 
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4 Verification Test of Momentum Conservation: Turbulent_Channel.fds 

We now turn to a discussion of a test case called Turbulent_Channel aimed at verifying global 

momentum conservation in FDS in the context of a turbulent flow. The FDS input file is an ASCII 

text file called Turbulent_Channel.fds (this file will be provided at the Workshop). We review 

below the main features of Turbulent_Channel.fds. 

4.1 Main Features 

The example case Turbulent_Channel is similar to the Poiseuille case presented in the previous 

section. The configuration features turbulent flow in a square channel. The size of the square 

channel is 𝐻 = 0.1 m; the volume flow rate is prescribed and equal to 𝑄̇𝑓𝑙𝑜𝑤 = 0.2 m3/s (a large 

value selected so that the flow is turbulent; the Reynolds number of the channel flow is 𝑅𝑒𝐻 =

(𝑢̅𝐻/𝜈) = (𝑄̇𝑓𝑙𝑜𝑤/(𝑊𝜈)) = (0.2/(0.1 × (1.5 × 10−5))) ≈ 133333, where  is the kinematic 

viscosity of ambient air, 𝜈 = 1.5 × 10−5 m2/s). The streamwise length of the channel is increased 

to 𝑥𝑒𝑥𝑖𝑡 = 4 m (a large value selected so that the computational domain is long enough to include 

both an entry length region and a large region with fully-developed turbulent flow behavior); grid 

resolution is unchanged. The simulation is run over a duration of 5 s (because of the large values 

of the flow velocity, 𝑢̅ = 20 m/s, and associated rates of turbulent mixing, transition to steady state 

is fast in this case and the simulation does not need to be run for a long time; the characteristic time 

scale of the problem is the mean flow-through time (𝑥𝑒𝑥𝑖𝑡/𝑢̅) = (4/20) = 0.2 s). 

4.2 Results from Turbulent_Channel 

We present below a sample of the results extracted from the simulation of Turbulent_Channel.fds. 

Figure 4.1 presents the simulated streamwise variations of mean (time-averaged) gauge pressure 

along the channel centerline. 

 
Figure 4.1: Spatial variations of mean (time-averaged) pressure along the channel centerline. This 

plot is extracted from the output file called Turbulent_Channel_devc.csv.  

Figure 4.1 shows that pressure variations in this case are much larger than those found in the 

previous laminar case (Figure 3.1). This is consistent with expectations since the mean flow 

velocity has been increased by a factor of 3000 (compare the values of 𝑄̇𝑓𝑙𝑜𝑤) and since pressure 

losses increase with flow velocity. The change in slope of the pressure gradient observed at 𝑥 ≈
1.5 m in Figure 4.1 is due to the transition from the entry length region to the fully-developed 

turbulent flow region. 
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The data presented in Figure 4.1 can be used to calculate the simulated pressure gradient in the 

fully-developed turbulent region. Using data between 𝑥 = 2 and 4 m, one finds: (𝑑𝑝̅/𝑑𝑥) ≈
−32 Pa/m. This value can be compared to the predictions given by the classical correlation due to 

Colebrook and White: 

(𝑑𝑝̅/𝑑𝑥) = −𝑓 × (
1

2
𝜌𝑢̅2) ×

1

𝐻
 

where f is the Darcy friction factor and is calculated from the following implicit equation: 

1

√𝑓
= −2 × 𝑙𝑜𝑔10(

2.51

𝑅𝑒𝐻√𝑓
) 

We find: 𝑓 ≈ 0.01695 and (𝑑𝑝̅/𝑑𝑥) ≈ −40 Pa/m. Thus, the simulated pressure losses are 

approximately 20% lower than those calculated by the Colebrook and White correlation. 

This difference may be explained by the fact that the near-wall turbulent boundary layer dynamics 

are not captured in the present simulation but rather are modelled through the use of a wall function 

(FDS assumes the classical logarithmic law of the wall; see the FDS Technical Reference Guide 

for details). The quality of near-wall grid resolution can be evaluated by examining the distance of 

the first off-wall grid node for streamwise velocity u: Δ𝑧1 = (∆𝑧/2) = 0.0025 m (note that FDS 

uses a staggered grid and x-velocities are evaluated at half distances in the vertical direction, i.e., 

at 𝑧𝑚𝑖𝑛 + (∆𝑧/2), 𝑧𝑚𝑖𝑛 + (3 × ∆𝑧/2), …, 𝑧𝑚𝑎𝑥 − (∆𝑧/2)). Following standard turbulent 

boundary layer analysis, the distance of the first off-wall grid node is re-cast in wall viscous units: 

∆𝑧1
+ = (𝑢𝜏 × Δ𝑧1/𝜈), where 𝑢𝜏 is the wall friction velocity, defined as 𝑢𝜏 = √𝜏𝑤/𝜌, with 𝜏𝑤 the 

wall shear stress. The wall shear stress 𝜏𝑤 can be calculated from a momentum balance statement 

(at steady state, viscous drag is balanced by pressure losses); we write: 

𝜏𝑤 = (−𝑑𝑝̅/𝑑𝑥) × (𝐻/4) ≈ (32) × (0.1/4) ≈ 0.8 Pa 

and from there: 

𝑢𝜏 = √𝜏𝑤/𝜌 = √0.8/1.2 ≈ 0.8 m/sΔ𝑧1 = (∆𝑧/2) = 0.0025 m 

∆𝑧1
+ = (𝑢𝜏 × Δ𝑧1/𝜈) = (0.8 × 0.0025 /(1.5 × 10−5)) ≈ 133 

This calculation shows that the simulation does not capture the wall velocity gradients (this would 

require ∆𝑧1
+ ≈ 1) and therefore relies on a subgrid-scale wall model to reconstruct these gradients 

and calculate the drag forces. The simulations are said to be “wall-modelled” (rather than “wall-

resolved”). The classical logarithmic law of the wall adopted by FDS is valid provided that ∆𝑧1
+ ≤

(100 − 300) and accuracy is expected to increase for lower values of ∆𝑧1
+. While not shown here, 

the 20% error on pressure losses observed in the present case is expected to decrease at higher 

resolution. 

This case provides another example of pressure losses in a channel flow and contributes to verify 

the ability of FDS to correctly simulate the coupling between flow velocity and pressure. It also 

provides a simple illustration of the importance of near-wall grid resolution in problems dominated 

by wall dynamics as well as a brief discussion of the classical approach for the assessment of grid 

quality based on a length scale analysis applied to the wall boundary layer. 

5 Verification Test of Energy Conservation: test_energy.fds 

We now turn to a discussion of a test case called test_energy aimed at verifying global energy 

conservation in FDS. The FDS input file is an ASCII text file called test_energy.fds (this file will 

be provided at the Workshop). We review below the main features of test_energy.fds. 
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5.1 Main Features 

The example case test_energy is similar to the FirstTry and TestMass cases presented in Sections 

1 and 2. The configuration features a reduced-scale cubic-shaped compartment of size 1 m exposed 

to a 40-kW methane-fueled fire and featuring a vertical vent (𝑊𝑂 = 𝐻𝑂 = 0.6 m). The simulation 

is run over a duration of 60 s with a 2-cm computational mesh resolution. 

5.2 Results from test_energy 

We present below a sample of the results extracted from the simulation of test_energy.fds. We focus 

here on the information contained in the output file called test_energy_hrr.csv: the first column in 

this file is time; the second column, called HRR, is the heat release rate (spatially-averaged over 

the volume of the computational domain); the third column, called Q_RADI, is the rate of energy 

loss through walls and vents due to radiative heat transfer (spatially-averaged over the surfaces of 

the boundaries of the computational domain); the fourth column, called Q_CONV, is the rate of 

energy loss through open vents due to convective transport (spatially-averaged over the surfaces of 

the vents); and the fifth column, called Q_COND, is the rate of energy loss through walls due to 

conduction (generally referred to as wall “convective” heat transfer) (spatially-averaged over the 

surfaces of the walls). Note that the sign of Q_RADI, Q_CONV and Q_COND is negative (the sign 

convention is to count gains as positive and losses as negative). 

 
Figure 5.1: Temporal variations of the mean (spatially-averaged) values of: heat release rate, HRR 

(black); rate of radiation heat loss through walls and vents, Q_RADI (red); rate of convection heat 

loss through open vents, Q_CONV (blue); rate of conduction heat loss through walls, Q_COND 

(brown). This plot is extracted from the output file called test_energy_hrr.csv.  

Figure 5.1 presents the simulated time variations of HRR, Q_RADI, Q_CONV and Q_COND. We 

find that the corresponding time-averaged values (averaged for 20 ≤ 𝑡 ≤ 60 s, i.e., after the initial 

transient and once steady state has been reached) are: 𝐻𝑅𝑅̅̅ ̅̅ ̅̅ ≈ 40 kW; −𝑄𝑅𝐴𝐷𝐼
̅̅ ̅̅ ̅̅ ̅ ≈ 11.4 kW; 

−𝑄𝐶𝑂𝑁𝑉
̅̅ ̅̅ ̅̅ ̅̅ ≈ 20.3 kW; −𝑄𝐶𝑂𝑁𝑉

̅̅ ̅̅ ̅̅ ̅̅ ≈ 8.5 kW. Thus, we find that at steady state, we can write: 𝐻𝑅𝑅̅̅ ̅̅ ̅̅ ≈
−(𝑄𝑅𝐴𝐷𝐼

̅̅ ̅̅ ̅̅ ̅ + 𝑄𝐶𝑂𝑁𝑉
̅̅ ̅̅ ̅̅ ̅̅ + 𝑄𝐶𝑂𝑁𝑉

̅̅ ̅̅ ̅̅ ̅̅ ) (within 0.5%). This result is a check of global conservation of energy: 

the energy released by the combustion process is stored as heat inside the fire plume and the smoke 

layer and convected out of the fire room through Q_CONV (in the present configuration, this 

energy path accounts for approximately 50% of the combustion heat release) or is lost to the walls 

due to radiative heat transfer through Q_RADI or “convective” heat transfer through Q_CONV). 

This case provides a simple example of the heat dynamics inside a fire room and contributes to 

verify the ability of FDS to correctly simulate the coupling between flow, combustion and radiation 

processes. 
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6 Verification Test of Flow Solver: vortex_N.fds 

We now turn to a discussion of a test case called vortex_N (where N is an integer equal to 2, 5, 10, 

20 or 40) aimed at providing another example of a grid convergence study in the context of a 

laminar flow problem that has a known analytical solution. The FDS input files are ASCII text files 

called vortex_N.fds (the file vortex_10.fds will be provided at the Workshop). We review below the 

main features of vortex_N.fds. 

 

6.1 Main Features 

The example case vortex_N corresponds to a basic laminar flow configuration known as the Lamb-

Oseen vortex. The configuration features relevant flow dynamics through convection and viscous 

decay and allows a quantification of the numerical error through comparisons between the 

numerical and analytical solutions. 

In a two-dimensional (𝑥, 𝑧) rectangular Cartesian coordinate system, the analytical solution for the 

Lamb-Oseen vortex can be expressed as: 

𝑢 = 𝑢𝜃,𝑚𝑎𝑥 (
𝑧 − 𝑧𝑐

𝑟𝑐
) exp (

1

2
(1 −

(𝑥 − 𝑥𝑐)2 + (𝑧 − 𝑧𝑐)2

𝑟𝑐
2

)) + 𝑢𝑐𝑜𝑓𝑙𝑜𝑤 

𝑤 = −𝑢𝜃,𝑚𝑎𝑥 (
𝑥 − 𝑥𝑐

𝑟𝑐
) exp (

1

2
(1 −

(𝑥 − 𝑥𝑐)2 + (𝑧 − 𝑧𝑐)2

𝑟𝑐
2

)) 

where 𝑟𝑐 and 𝑢𝜃,𝑚𝑎𝑥 are the characteristic size and velocity of the vortex structure at a particular 

time, (𝑥𝑐, 𝑧𝑐) the coordinates of the center of the vortex, and 𝑢𝑐𝑜𝑓𝑙𝑜𝑤 the velocity of an assumed 

uniform co-flow in the x-direction. In these expressions, the variables 𝑟𝑐, 𝑢𝜃,𝑚𝑎𝑥 and (𝑥𝑐, 𝑧𝑐) are 

time-dependent and their time variations are given by: 

𝑟𝑐 = (𝑟𝑐,0 + 2𝜈𝑡)1/2 

𝑢𝜃,𝑚𝑎𝑥 =
𝑢𝜃,𝑚𝑎𝑥,0

(1 +
2𝜈𝑡
𝑟𝑐,0

2 )3/2
 

(𝑥𝑐, 𝑧𝑐) = ((𝑥𝑐,0 + 𝑢𝑐𝑜𝑓𝑙𝑜𝑤 × 𝑡), 𝑧𝑐,0)  

where 𝑟𝑐,0, 𝑢𝜃,𝑚𝑎𝑥,0 and (𝑥𝑐,0, 𝑧𝑐,0) are the prescribed values of 𝑟𝑐, 𝑢𝜃,𝑚𝑎𝑥 and (𝑥𝑐, 𝑧𝑐) at initial 

time, 𝑡 = 0, and where 𝜈 is the kinematic viscosity of ambient air. In the following, we use: 𝑟𝑐,0 =

0.005 m; 𝑢𝜃,𝑚𝑎𝑥,0 = 0.5 m/s; 𝑢𝑐𝑜𝑓𝑙𝑜𝑤 = 0.1 m/s; (𝑥𝑐,0, 𝑧𝑐,0) = (0,0); and 𝜈 = 10−5 m2/s. 

The initial flow velocity field is generated using a MATLAB script file called Initialize_vortex.m 

(this file will be provided at the Workshop). The MATLAB program generates the initial velocity 

field in a two-dimensional computational domain of size (0.1 × 0.1) m2 and using a uniform grid 

with (10 × 𝑁) × (10 × 𝑁) computational grid cells; we consider different levels of grid resolution: 

(2 × 𝑟𝑐,0)/∆𝑥 = 𝑁, with 𝑁 = 2, 5, 10, 20, 40. Note that the MATLAB program pays close attention 

to the staggered grid format adopted in FDS: x-velocities, u, are evaluated at cell faces in the x-

direction (i.e., at (𝑥𝑚𝑖𝑛 + 𝑖 × ∆𝑥), where i is a running index for the x-grid) and cell centers in the 

z-direction (i.e., at (𝑧𝑚𝑖𝑛 + 𝑘 × (∆𝑧/2)), where k is a running index for the z-grid), while z-

velocities, w, are evaluated at cell centers in the x-direction (i.e., at (𝑥𝑚𝑖𝑛 + 𝑖 × (∆𝑥/2)), where i 

is a running index for the x-grid) and cell faces in the z-direction (i.e., at (𝑧𝑚𝑖𝑛 + 𝑘 × ∆𝑧), where k 

is a running index for the z-grid). Finally, the MATLAB program stores the velocity field in a 
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comma-separated values (CSV) file called init_vortex_N_uvw.csv. These files are then read by FDS 

and used as initial conditions for simulations. 

Let us consider the case 𝑁 = 10. The input file vortex_10.fds contains the following statement that 

instructs FDS to read the external file init_vortex_10_uvw.csv (this file has been previously copied 

to the run directory): 

&CSVF UVWFILE = 'init_vortex_10_uvw.csv' / 

The example case vortex_10 features a Lamb-Oseen vortex structure convected by a coflow inside 

a two-dimensional computational domain of size 0.1 m with a grid resolution ∆𝑥 = 0.001 m 

((2 × 𝑟𝑐,0)/∆𝑥 = 10). The simulation is run over a duration of 3 s. 

&MESH IJK = 100,1,100, XB = -0.05,0.05, -0.001,0.001, -0.05,0.05 / 

&TIME T_END = 3.0 / 

At time 𝑡 = 3 s, the vortex has covered a distance of (𝑢𝑐𝑜𝑓𝑙𝑜𝑤 × 𝑡) = 0.3 m, i.e., 3 times the size 

of the computational domain. While this problem could be simulated using a computational domain 

large enough to capture the entire displacement of the vortex structure, it is more effective to 

simulate the problem using periodic boundary conditions: 

&VENT MB='XMIN', SURF_ID = 'PERIODIC' / 

&VENT MB='XMAX', SURF_ID = 'PERIODIC' / 

The periodic boundary conditions applied at the west and east boundaries of the domain essentially 

simulate an infinite train of vortices along the x-direction separated by a 0.1-m distance: when the 

vortex leaves the domain at the east boundary, the same vortex re-enters at the west boundary. 

Thus, at time 𝑡 = 3 s, the center of the vortex structure is back to its original position at (𝑥𝑐, 𝑧𝑐) =
(0,0). 

Furthermore, the viscosity of the gas (FDS assumes air as the default choice) is artificially modified 

with the following statement: 

&SPEC ID = 'AIR', VISCOSITY = 1.199266e-5, BACKGROUND = .TRUE. / 

where VISCOSITY is the dynamic viscosity: 𝜇 = 1.199266 × 10−5 kg/m/s; and because the 

mass density of air (at normal temperature and pressure conditions) is 𝜌 = 1.199266 kg/m3, we 

have 𝜈 = ( 𝜇/𝜌) = 10−5 m2/s. 

The main diagnostic is the profile of the variations of z-velocity along the line 𝑧 = 0: 

&DEVC ID = 'W-Vel', XB = -0.0495,0.0495, 0.0,0.0, -0.0005,-0.0005, 

QUANTITY = 'W-VELOCITY', POINTS = 100, TIME_AVERAGED = .FALSE. / 

This DEVC statement creates an output file called vortex_10_line.csv that contains QUANTITY 

data along the line specified by the XB coordinates. The default time-averaging feature available 

with this diagnostic is turned off here. During the simulation, vortex_10_line.csv is continuously 

updated with instantaneous profiles and, at the end of the simulation, vortex_10_line.csv contains 

the last profile obtained at time 𝑡 = 3 s. Note that in the DEVC statement, the XB coordinates are 

the coordinates of the cell centers along the horizontal line of interest (at 𝑧 = −(∆𝑧/2)) but, 

consistent with the staggered grid format, FDS will actually evaluate the W-VELOCITY at the 

centers of the north faces along this line (i.e., at 𝑧 = 0). In summary, the DEVC statement allows 

the extraction of the z-velocity profile along the line 𝑧 = 0 and at the final time 𝑡 = 3 s. 
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Figure 6.1: Spatial variations of z-velocity along the line 𝑧 = 0 and at time 𝑡 = 3 s. This plot is 

extracted from the output files called vortex_N_line.csv. Comparison between simulations 

performed with different levels of grid resolution: 𝛥𝑥 = 0.005 m and (2 × 𝑟𝑐,0)/∆𝑥 = 2 (blue 

dashed line); 𝛥𝑥 = 0.002 m and (2 × 𝑟𝑐,0)/∆𝑥 = 5 (green dashed line); 𝛥𝑥 = 0.001 m and 

(2 × 𝑟𝑐,0)/∆𝑥 = 10 (cyan dashed line); 𝛥𝑥 = 0.0005 m and (2 × 𝑟𝑐,0)/∆𝑥 = 20 (magenta dashed 

line); 𝛥𝑥 = 0.00025 m and (2 × 𝑟𝑐,0)/∆𝑥 = 40 (red dashed line). The FDS results are also 

compared to the analytical Lamb-Oseen vortex flow solution (black solid line). 

6.2 Results from vortex_N 

We present below a sample of the results extracted from the simulation of vortex_N.fds. Figure 6.1 

presents the simulated spatial variations of z-velocity along the line 𝑧 = 0 and at time 𝑡 = 3 s. The 

FDS results are also compared to the analytical Lamb-Oseen vortex flow solution presented in the 

previous section. In Figure 6.1, the difference between the FDS results and the analytical solution 

gives a valuable quantification of the numerical error. One finds that for (2 × 𝑟𝑐,0)/∆𝑥 ≥ 10, the 

vortex structure is well-resolved and the numerical error remains small; in contrast, for 

(2 × 𝑟𝑐,0)/∆𝑥 ≤ 5, the vortex structure is under-resolved and the numerical error is large. The 

numerical error takes the form of dissipative errors (also known as “numerical diffusion”) that act 

to reduce the strength of the vortex and dispersive errors that affect the speed and location of the 

vortex center. 

This example provides another illustration of the importance of grid resolution on the accuracy of 

a CFD simulation and confirms the rule of thumb for grid design discussed in Section 1 (the rule 

suggests using 10 grid cells per relevant physical length scale, here the size of the vortex, 

𝐿 = (2 × 𝑟𝑐,0)). The example also provides an illustration of how to set initial conditions in FDS 

and allows a discussion of the subtleties associated with the staggered grid format. 

7 Verification Test of Radiation Solver: radiation_box_50_N.fds 

We now turn to a discussion of a test case called radiation_box_50_N (where N is an integer equal 

to 50, 100, 200, 500, 1000 or 2000) aimed at providing an example of angular convergence in the 

radiation solver. The radiation solver in FDS is based on a decomposition of angular space (4 

steradians) into N elementary solid angles and a calculation of the radiation intensity (in units of 

W/m2/sr) in each elementary solid angle using the radiative transfer equation (RTE) and a Discrete 

Ordinates Method (DOM). The default choice for the number of angles used in the decomposition 

of angular space is 𝑁 = 100 and N is varied here in order to study angular convergence. The FDS 

input files are ASCII text files called radiation_box_50_N.fds (the file radiation_box_50_500.fds 

will be provided at the Workshop). We review below the main features of radiation_box_50_N.fds. 
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7.1 Main Features 

The example case radiation_box_50_N corresponds to a basic radiation configuration in which an 

array of targets is exposed to black body radiation from a source of known temperature (the 

emissive power of the source is prescribed) and of known location and geometry (the view factor 

between each target and the source can be calculated analytically), and in which the targets and the 

source are separated by transparent gas. The analytical expression for the incoming radiative heat 

flux arriving at each target (also called the irradiation, in units of W/m2) is: 𝐺 = 𝜙 × (𝜎𝑇𝑠
4), where 

𝜙 is the view factor, 𝜎 the Stefan-Boltzmann constant, 𝜎 = 5.67 × 10−8 𝑊/𝑚2/𝐾4, and 𝑇𝑠 the 

temperature of the source. The values of 𝜙 for each target in the radiation_box_50_N case are pre-

calculated and are provided as comments in the FDS input file. The configuration thereby allows a 

quantification of the numerical error through comparisons between the numerical and analytical 

solutions. 

Let us consider the case 𝑁 = 500. The example case radiation_box_50_500 features a cubic-

shaped computational domain of size 1 m with a grid resolution ∆𝑥 = 0.02 m (the spatial resolution 

plays a minor role in the present test case): 

&MESH XB=0.0,1.0,0.0,1.0,0.0,1.0, IJK=50,50,50 / 

The source is a (1 × 1) m2 hot solid plate located on the vertical plane 𝑥 = 0 and the targets are 

located on the plane 𝑥 = 1 m. The source is a black body (𝜖𝑠 = 1) surface at 𝑇𝑠 =
(273.15 + 91.2717) K; its emissive power is (𝜎𝑇𝑠

4) = 1 kW/m2; possible exchange of heat 

between the hot plate and the gas through convective heat transfer is turned off (ℎ = 0): 

&VENT XB=0.0,0.0,0.0,1.0,0.0,1.0, SURF_ID='HOT' / 

&SURF ID = 'HOT' TMP_FRONT = 91.2717 TAU_T = 0. EMISSIVITY=1.0,  

HEAT_TRANSFER_COEFFICIENT=0. COLOR='RED'/ 

where TMP_FRONT designates the temperature of the source (in units of degree Celsius), 

EMISSIVITY the emissivity 𝜖𝑠 and HEAT_TRANSFER_COEFFICIENT the convective heat 

transfer coefficient ℎ. 

All other surfaces are treated as black body surfaces with a temperature of 1 K (these surfaces do 

not reflect and do not emit radiation): 

&SURF ID = 'COLD' TMP_FRONT = -272.15 TAU_T = 0. EMISSIVITY=1.0,  

HEAT_TRANSFER_COEFFICIENT=0. COLOR='BLUE'/ 

The gas between the source and the targets is dry air (and is therefore transparent): 

&MISC Y_CO2_INFTY=0., HUMIDITY=0. / 

The number of radiation angles is 𝑁 = 500: 

&RADI NUMBER_RADIATION_ANGLES=500  

NUMBER_INITIAL_ITERATIONS=0 

TIME_STEP_INCREMENT = 1 

ANGLE_INCREMENT = 1 / 

The statement “TIME_STEP_INCREMENT = 1” indicates that the radiation solver is called at 

every time step (i.e., for every call to the gas phase solver). The statement “ANGLE_INCREMENT 

= 1” indicates that each elementary solid angle in the decomposition of angular space is updated 

during a call to the radiation solver. These two statements provide maximum accuracy in the 

radiation calculation. 
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The simulation is run over one time step (radiation transport is instantaneous and there is therefore 

no point in simulating this problem for a longer duration): 

&TIME T_END=0.1, DT = 0.1 / 

The main diagnostics are the heat fluxes measured at different locations along a straight line (𝑦 −
𝑧) = 0 in the plane 𝑥 = 1 m: 

&DEVC QUANTITY = 'INCIDENT HEAT FLUX' XYZ = 1.0,0.025,0.025 IOR=-1 / 

&DEVC QUANTITY = 'INCIDENT HEAT FLUX' XYZ = 1.0,0.075,0.075 IOR=-1 / 

… 

&DEVC QUANTITY = 'INCIDENT HEAT FLUX' XYZ = 1.0,0.975,0.975 IOR=-1 / 

Note that in FDS, “INCIDENT HEAT FLUX” denotes the incoming radiative heat flux (i.e., the 

irradiation G). 

7.2 Results from radiation_box_50_N 

We present below a sample of the results extracted from the simulation of radiation_box_50_N.fds. 

Figure 7.1 presents the simulated spatial variations of the irradiation G along the line (𝑦 − 𝑧) = 0 

at 𝑥 = 1 𝑚 and compares the values of G obtained in simulations with different levels of angular 

resolution (from 50 to 2000 angles). The FDS results are also compared to the analytical solution 

presented in the previous section. In Figure 7.1, the difference between the FDS results and the 

analytical solution gives a valuable quantification of the numerical error. One finds that for 𝑁 ≥
200, the radiation field at 𝑥 = 1 𝑚 is well-resolved and the numerical error remains small; in 

contrast, for 𝑁 ≤ 100, the radiation field is under-resolved and the numerical error is large. The 

numerical error takes the form of unphysical oscillations (and may lead to the clearly incorrect 

result that the irradiation peaks at an off-center location). 

The present conclusion that 200 angles provide adequate results is problem-dependent and cannot 

be generalized in that form. The design of a suitable discretization of angular space, ∆Ω = (4𝜋/𝑁), 

may be understood as a process based on a comparison of solid angles. It starts first with the 

identification of physical solid angles associated with angular regions of interest, ∆Ω𝑠, in a given 

fire scenario (for instance, in the present case, the solid angle associated with the angular region 

occupied by the hot plate when viewed from one of the targets) and then finishes with a comparison 

of ∆Ω𝑠 to ∆Ω. The rule of thumb in the design process consists in providing 10 elementary solid 

angles per relevant angular region: (∆Ω𝑠/∆Ω) ≥ 10. If time permits, a second FDS example will 

be presented during the workshop. 
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Figure 7.1: Spatial variations of the irradiation along the line (𝑦 − 𝑧) = 0 at 𝑥 = 1 m. This plot 

is extracted from the output files called radiation_box_50_N_devc.csv. Comparison between 

simulations performed with different levels of angular resolution: 𝑁 = 50 (blue solid line); 𝑁 =
100 (blue dashed line); 𝑁 = 200 (green dashed line); 𝑁 = 500 (cyan dashed line); 𝑁 = 1000 

(magenta dashed line); 𝑁 = 2000 (red dashed line). The FDS results are also compared to the 

analytical solution (black solid line). 

This example provides an illustration of the importance of angular space discretization on the 

accuracy of the simulation of radiation transport as well as a brief discussion of the classical 

approach for the assessment of the quality of angular discretization based on a solid angle analysis 

and an angular convergence study. 

8 Verification Test of Pyrolysis Solver: wood_pyrolysis_100_N.fds 

We now turn to a discussion of a test case called wood_pyrolysis_100_N (where N is an integer 

equal to 100, 200, 400, 800, 1600 or 3200) aimed at providing an example of grid convergence in 

the (solid phase) pyrolysis solver. The pyrolysis solver in FDS is based on a one-dimensional 

treatment of solid heat conduction and mass conservation combined with pyrolysis chemistry. The 

spatial resolution adopted in the solid phase solver is made using a default implicit choice in FDS; 

this choice is varied here in order to study grid convergence (in the solid phase). The FDS input 

files are ASCII text files called wood_pyrolysis_100_N.fds (the file wood_pyrolysis_100_100.fds 

will be provided at the Workshop). We review below the main features of 

wood_pyrolysis_100_N.fds. 

 

8.1 Main Features 

The example case wood_pyrolysis_100_N corresponds to a basic cone calorimeter configuration in 

which a wood sample is exposed to an incoming radiative heat flux (irradiation) of 100 kW/m2 (this 

value is high and is in fact higher than the values typically studied in a cone calorimeter; the choice 

of a high value is made here to facilitate the illustration of the problems associated with grid 

resolution in the solid phase) and the response of the sample is characterized through measurements 

of the mass loss rate. 

Let us consider the case 𝑁 = 100. The example case wood_pyrolysis_100_100 features a 2.5-cm-

thick wood sample exposed to 100 kW/m2 irradiation and simulated as a one-dimensional solid 

phase problem with a uniform grid resolution of ∆𝑥𝑠 ≈ 100 𝜇m (in FDS, the resolution used in the 

solid phase solver is not explicitly controlled in the input file. The relevant information can be 
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found in the FDS output file called wood_pyrolysis_100_100.out; open this file and look for the 

keywords “Solid Phase Node, Layer, Coordinates(m)”). 

The following statement indicates that the simulation is limited to the solid phase solver: 

&MISC SOLID_PHASE_ONLY=.TRUE., Y_O2_INFTY=0.01 / 

The cone calorimeter conditions are defined as follows: 

&SURF ID = 'WALL' 

MATL_ID = 'WOOD' 

THICKNESS = 0.025 

BACKING = 'INSULATED' 

EXTERNAL_FLUX = 100. 

RAMP_EF = 'External flux' 

HEAT_TRANSFER_COEFFICIENT = 10.  

STRETCH_FACTOR = 1 

CELL_SIZE_FACTOR = 0.375 /  

where MATL_ID defines the material of the sample, THICKNESS its thickness, BACKING the 

backside thermal boundary condition, EXTERNAL_FLUX and RAMP_EF the irradiation, and 

HEAT_TRANSFER_COEFFICIENT the convective heat transfer coefficient at the exposed 

surface. In addition, the statement “STRETCH_FACTOR = 1” indicates that the solid phase solver 

is using a uniform grid and the statement “CELL_SIZE_FACTOR = 0.375” indicates that the grid 

resolution is 0.375 times the default implicit choice made in FDS: this factor leads to a value ∆𝑥𝑠 ≈
100 𝜇m. 

The simulation is run over a duration 3500 s (a large value selected so that the simulation includes 

the burn out of the sample) 

&TIME TWFIN=3500., WALL_INCREMENT=1 / 

The statement “WALL_INCREMENT=1” indicates that the solid phase solver is called at every 

time step (i.e., for every call to the gas phase solver). This statement provides maximum accuracy 

in the simulation of the gas-solid phase coupling. 

The wood pyrolysis model is defined as follows: 

&MATL ID = 'WOOD' 

EMISSIVITY = 0.9 

CONDUCTIVITY = 0.126 

DENSITY = 663. 

SPECIFIC_HEAT = 2.52 

N_REACTIONS = 1 

A = 5.25E+07 

E = 1.256E+05 

SPEC_ID = 'METHANE' 

MATL_ID = 'CHAR' 
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NU_SPEC = 0.8 

NU_MATL = 0.2 

HEAT_OF_REACTION = 0 / Source: Novozhilov et al., Fire Safety J. 27 (1996) 69-84 

where A and E are the pre-exponential factor and the activation energy associated with the single-

step (“N_REACTIONS = 1”) pyrolysis chemistry model (see the FDS Technical Reference Guide 

for details), NU_SPEC and NU_MATL are the (mass) yields of flammable fuel vapors (treated as 

'METHANE') and solid residue (called 'CHAR'), and HEAT_OF_REACTION is the heat of 

pyrolysis assumed in the pyrolysis chemistry model. In this model, 80% of the virgin wood is 

transformed into fuel vapors and 20% is transformed into char; the transformation is neutral from 

an energy perspective. 

The thermal properties of the char residue are: 

&MATL ID = 'CHAR' 

EMISSIVITY = 0.9 

CONDUCTIVITY = 0.126 

DENSITY = 133. 

SPECIFIC_HEAT = 2.52 / 

The main diagnostic is the fuel mass loss rate per unit exposed surface area (called BURNING 

RATE in FDS): 

&DEVC XYZ=0.02,0.02,0.0, QUANTITY='BURNING RATE', IOR=+3, ID='MLRPUA_1' / 

&DEVC XYZ=0.05,0.05,0.0, QUANTITY='BURNING RATE', IOR=+3, ID='MLRPUA_2' / 

&DEVC XYZ=0.08,0.08,0.0, QUANTITY='BURNING RATE', IOR=+3, ID='MLRPUA_3' / 

The mass loss rate is measured at three different locations in order to check that the problem is 

indeed one-dimensional. Results show that the three diagnostics provide identical values. 

 
Figure 8.1: Temporal variations of the fuel mass loss rate per unit surface area, 0 ≤ 𝑡 ≤ 180 s. 

This plot is extracted from the output files called wood_pyrolysis_devc.csv. Comparison between 

simulations performed with different levels of grid resolution: ∆𝑥𝑠 ≈ 3.2 mm (blue solid line); 

∆𝑥𝑠 ≈ 1.6 mm (blue dashed line); ∆𝑥𝑠 ≈ 800 𝜇m (green dashed line); ∆𝑥𝑠 ≈ 400 𝜇m (cyan 

dashed line); ∆𝑥𝑠 ≈ 200 𝜇m (magenta dashed line); ∆𝑥𝑠 ≈ 100 𝜇m (red dashed line). 

8.2 Results from wood_pyrolysis_100_N 
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We present below a sample of the results extracted from the simulation of 

wood_pyrolysis_100_N.fds. Figure 8.1 presents the simulated temporal variations of the fuel mass 

loss rate per unit surface area (MLRPUA) for the early phase of the pyrolysis process, 0 ≤ 𝑡 ≤
180 s, and compares the values of MLRPUA obtained in simulations with different levels of grid 

resolution (from 100 m to 3.2 mm). One finds that for ∆𝑥𝑠 ≤ 200 𝜇m, the solution is grid-

converged; in contrast, for ∆𝑥𝑠 ≥ 400 𝜇m, the solution is under-resolved and features large 

unphysical oscillations. The rule of thumb for grid design in the solid phase is to use a resolution 

of order 100 m.  

If time permits, a second FDS example will be presented during the workshop. 

This example provides an illustration of the importance of spatial discretization in the solid phase 

on the accuracy of the simulation of pyrolysis processes as well as a discussion of the subtleties 

associated with providing user-control of spatial discretization inside the solid phase. 

. 

 


