Codes à champs pour l'incendie

Arnaud Trouvé Department of Fire Protection Engineering University of Maryland, College Park, MD 20742 (USA)

CFD-Based Compartment Fire Modeling

• Outline

- Fire modeling approaches
- CFD infrastructure
- Multi-physics modeling

A simplified two-layer description of compartment fires

Zone modeling

- Main features
 - Computationally cheap (two control volumes per compartment)
 - System-level view point (unlimited in problem size and scope)
 - Limited accuracy (use of empirical correlations)

5/29/18

Zone modeling

- History
 - Developed in the 1980s, acted as a precursor to CFDbased approaches developed in the 1990s
- Landscape
 - Commercial software: MAGIC (EDF, France)
 - Software with limited distribution: BRI2002 (Building Research Institute, Japan)
 - Open-source software: CFAST (NIST, USA)

Zone modeling

- Applications
 - Studies of large/complex building systems (multi-rooms, ventilation system, *etc*)
 - Risk analysis (*e.g.* studies that require 100s/1,000s simulations)

5/29/18

 A spatially-resolved description of compartment fires

5/29/18

CFD modeling

- Main features
 - Computationally expensive (O(10⁶) control volumes)
 - Limited view point (in problem size and in scope)
 - Moderate to high/very high accuracy (based on first principles)

CFD modeling

- History
 - Still a recent (approximately 20-25 years old) and fast evolving activity
 - Early adoption and now widespread use by different fire safety stakeholders (including researchers, engineers and non-engineers)
- Landscape
 - No commercial software
 - Software with limited distribution: JASMINE (Building Research Establishment, UK), KAMELEON (Norwegian University of Science and Technology/SINTEF, Norway), SMARTFIRE (University of Greenwich, UK), SOFIE (University of Cranfield, UK)
 - Open-source software: FDS (NIST, USA), FireFOAM (FM Global, USA), ISIS (IRSN, France)

CFD modeling

- Landscape
 - RANS models: JASMINE (Building Research Establishment, UK), KAMELEON (Norwegian University of Science and Technology/SINTEF, Norway), SMARTFIRE (University of Greenwich, UK), SOFIE (University of Cranfield, UK), ISIS (IRSN, France)
 - LES models: FDS (NIST, USA), FireFOAM (FM Global, USA), ISIS (IRSN, France)
- RANS versus LES
 - RANS limitation: model coefficients are configurationdependent and require careful calibration work; not wellsuited to fire problems that feature a wide variety of configurations
 - LES capability: well-suited to capture the strongly unsteady transient phases observed in fire dynamics as well as the large-scale flow and combustion features that are typical of fire configurations

5/29/18

CFD modeling

- Applications
 - Performance-based design (evacuation performance, smoke management, fire suppression systems, structural resistance, *etc*)
 - Forensic applications
 - Risk analysis
 - Fire-fighter training
 - Sensor-driven real-time emergency management
 - Research (scientific studies of fire dynamics)

CFD-Based Compartment Fire Modeling

• Outline

- Fire modeling approaches
- CFD infrastructure
- Multi-physics modeling

- CFD-based fire modeling (field modeling)
 - A branch in a wider class of simulation tools known as Computational Fluid Dynamics (CFD)
 - CFD infrastructure requires:
 - Mathematical models to describe relevant physics
 - First principles (conservation of mass, momentum, energy)
 - Numerical algorithms to solve mathematical models
 - ✓ PDE solvers
 - ✓ Mesh generators
 - Computer power to enable numerical algorithms
 - Massively parallel computers
 - ✓ GPU computers

- Mathematical modeling (DNS)
 - Poinsot & Veynante, "Theoretical and Numerical Combustion," 3rd Ed. 2012.

$$\begin{split} \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_{j}}(\rho u_{j}) &= 0\\ \frac{\partial}{\partial t}(\rho Y_{k}) + \frac{\partial}{\partial x_{j}}(\rho Y_{k}u_{j}) &= \frac{\partial}{\partial x_{j}}(\rho D_{k}\frac{\partial Y_{k}}{\partial x_{j}}) + \dot{\omega}_{k}, \quad 1 \leq k \leq N_{S}\\ \frac{\partial}{\partial t}(\rho u_{i}) + \frac{\partial}{\partial x_{j}}(\rho u_{i}u_{j}) &= -\frac{\partial p}{\partial x_{i}} + \frac{\partial \tau_{ij}}{\partial x_{j}} + \rho g_{i}, \quad 1 \leq i \leq 3\\ \frac{\partial}{\partial t}(\rho h) + \frac{\partial}{\partial x_{j}}(\rho hu_{j}) &= \frac{\partial p}{\partial t} + u_{j}\frac{\partial p}{\partial x_{j}} + \tau_{ij}\frac{\partial u_{i}}{\partial x_{j}} - \frac{\partial q_{j}}{\partial x_{j}}\\ p &= \rho RT(\sum_{k=1}^{N_{k}}\frac{Y_{k}}{M_{k}}) \end{split}$$

Mathematical modeling (DNS)

- Computational grid requirement
 - Turbulence viewed as a multi-scale problem

5/29/18

Mathematical modeling (DNS)

- Computational grid requirement
 - Large eddies (macro-scales)
 - Turbulent rms velocity (m/s): u'
 - ✓ Integral length scale (m): L_t
 - ✓ Turbulent Reynolds number

$$\operatorname{Re}_{t} = \frac{\rho u' L_{t}}{\mu} = \frac{u' L_{t}}{\nu}$$

- Small eddies (micro-scales, also called Kolmogorov scales)
 - ✓ Kolmogorov velocity (m/s) $v_{K} = u' \times (\text{Re}_{t})^{-1/4}$
 - ✓ Kolmogorov length scale (m)

$$\eta_K = L_t \times (\operatorname{Re}_t)^{-3/4}$$

• Mathematical modeling (DNS)
• Computational grid requirement
• Example: pool fire,
$$\dot{Q} = 1$$
 MW; $D = 1$ m
 $\overline{u}_{CL,\max} \approx 1.9 \times (\dot{Q}/1000)^{1/5} = 7.6 \text{ m/s}$
 $u' \approx 0.3 \times \overline{u}_{CL,\max} = 2.3 \text{ m/s}$
 $L_t \approx 0.5 \times D = 0.5 \text{ m}$
 $\Rightarrow \qquad \left[\eta_{K} = \frac{L_t}{(\text{Re}_t)^{3/4}} = \frac{0.5}{(11500)^{3/4}} = 0.4 \text{ mm} \right] \text{ (Kolmogorov scaling)}$
 $\overline{\Delta x_{DNS} \approx 0.4 \text{ mm}} \quad \text{Grid requirement based on flow}$

Mathematical modeling (DNS)

- Computational grid requirement
 - Combustion viewed as a numerically stiff problem

Mathematical modeling (DNS)

- Computational grid requirement
 - Thermal radiation viewed as a numerically stiff problem

Proc. Combust. Inst. 2016

19

CFD

• Computational grid requirement • Direct Numerical Simulation (DNS) • Grid-resolved scales: L_t , η_K , δ_{flame} , δ_{soot} $\Delta x_{DNS} \approx \eta_K$ $\Delta x_{DNS} \approx (\delta_{flame}/10)$ $\Delta x_{DNS} \approx (\delta_{soot}/10)$ $\Rightarrow \Delta x_{DNS} = O(0.1 \text{ mm})$

- Mathematical modeling (LES)
 - Poinsot & Veynante, "Theoretical and Numerical Combustion," 3rd Ed. 2012.

$$\begin{split} \frac{\partial \rho}{\partial t} &+ \frac{\partial}{\partial x_{j}} (\bar{\rho} \tilde{u}_{j}) = 0 \\ \frac{\partial}{\partial t} (\bar{\rho} \tilde{Y}_{k}) &+ \frac{\partial}{\partial x_{j}} (\bar{\rho} \tilde{Y}_{k} \tilde{u}_{j}) = -\frac{\partial \lambda_{kj}}{\partial x_{j}} + \frac{\partial}{\partial x_{j}} (\bar{\rho} D_{k} \frac{\partial Y_{k}}{\partial x_{j}}) + \overline{\omega}_{k}, \quad 1 \le k \le N_{s} \\ \frac{\partial}{\partial t} (\bar{\rho} \tilde{u}_{i}) &+ \frac{\partial}{\partial x_{j}} (\bar{\rho} \tilde{u}_{i} \tilde{u}_{j}) = -\frac{\partial T_{ij}}{\partial x_{j}} - \frac{\partial \overline{p}}{\partial x_{i}} + \frac{\partial \overline{\tau}_{ij}}{\partial x_{j}} + \overline{\rho} g_{i}, \quad 1 \le i \le 3 \\ \frac{\partial}{\partial t} (\bar{\rho} \tilde{h}) &+ \frac{\partial}{\partial x_{j}} (\bar{\rho} \tilde{h} \tilde{u}_{j}) = -\frac{\partial Q_{j}}{\partial x_{j}} + \frac{\partial \overline{p}}{\partial t} + u_{j} \frac{\partial p}{\partial x_{j}} + \overline{\tau}_{ij} \frac{\partial u_{i}}{\partial x_{j}} - \frac{\partial \overline{q}_{j}}{\partial x_{j}} \\ \overline{p} = \overline{\rho} R \tilde{T} \sum_{k=1}^{N_{s}} \frac{\tilde{Y}_{k}}{M_{k}} + R \sum_{k=1}^{N_{s}} \frac{(\overline{\rho} T Y_{k} - \overline{\rho} \tilde{T} \tilde{Y}_{k})}{M_{k}} \end{split}$$

Mathematical modeling (LES)

- Mathematical formulation applied to LES-filtered (*i.e.* computational-grid-cell-averaged) quantities; requires models to describe unresolved (subgridscale) physics
 - Models to describe turbulent fluxes: $\lambda_{\scriptscriptstyle kj}, T_{\scriptscriptstyle ij}, Q_{\scriptscriptstyle j}$
 - Models to describe turbulent combustion: $\dot{\omega}_{_{L}}$
 - Models to describe thermal radiation transport: \overline{q}_{j}

Mathematical modeling (LES)

- Computational grid requirement
 - Turbulence viewed as a multi-scale problem

5/29/18

Mathematical modeling (LES)

- Computational grid requirement (fine-grained LES)
 - Example: pool fire, $\dot{Q} = 1$ MW; D = 1 m

 $L_t \approx 0.5 \times D = 0.5 \text{ m}$

$$\Rightarrow \quad \Delta x_{LES} \approx \frac{L_t}{10} = 0.05 \text{ m} \approx 100 \times \Delta x_{DNS}$$

5/29/18

- Computational grid requirement • Direct Numerical Simulation (DNS) • Grid-resolved scales: L_t , η_K , δ_{flame} , δ_{soot} $\Delta x_{DNS} \approx \eta_K$ $\Delta x_{DNS} \approx (\delta_{flame}/10)$ $\Delta x_{DNS} \approx (\delta_{soot}/10)$ $\Rightarrow \Delta x_{DNS} = O(0.1 \text{ mm})$
 - Large Eddy Simulation (LES)
 - Grid-resolved scales: L_t

 $\Delta x_{LES} \approx (L_t/10)$

• Unresolved scales: η_{K} , δ_{flame} , δ_{soot}

- Mathematical modeling (LES)
 - Computational grid requirement (coarse-grained LES)
 - Example: fire in a large building system

• Example: fire in a large building system $L_{system} = 50 \text{ m}$ U = 10 m/s T = 10 minutes $CPU \cos t = 24 \times 32 \text{ PEs} = 768 \text{ hours}$ CFL = 0.5 $\Rightarrow \Delta x \sim 0.5 \text{ m}$ $(N_{\Delta x} N_{\Delta y} N_{\Delta z}) \sim 1 \text{ Million}$

Mathematical modeling (LES)

Computational grid requirement (coarse-grained LES)

5/29/18

28

Computer power

- Cyber-infrastructure (CI): Information Technologies for computation, storage, communication, and data processing services, driven by:
 - Fast development of computer and network technologies
 - Dissemination of these technologies on a global scale
 - Rapid decrease in cost (< \$1/MFlops)

5/29/18

Computer power

- Current status of CI technologies
 - High-performance computing (HPC) facilities (Government Research Laboratories, Universities)
 - Massively parallel processing systems with computational rates ~ 1 Exa (10¹⁸) Flops
 - Small-to-mid-scale computing facilities (Businesses)

Medium-scale parallel computing systems (clusters)

• Grid infra-structure (coupling of distributed and heterogeneous computational resources and data stores via high-speed networks)

✓ Grid computing

5/29/18

Computer power

- Changes brought by CI technologies
 - Development of *computational research* as a new scientific approach
 - Development of *computational research* as a new engineering approach
 - Development of open-source data and software *digital libraries*
 - Development of distance collaborations and the formation of new *cyber-based communities*

CFD-Based Compartment Fire Modeling

• Outline

- Fire modeling approaches
- CFD infrastructure
- Multi-physics modeling

- Fire modeling requires model descriptions of a range of complex multi-physics phenomena
 - Buoyancy-driven turbulent flow
 - Non-premixed combustion
 - Pyrolysis processes
 - Soot formation/oxidation
 - Thermal radiation transport
 - Water spray

• Turbulence modeling

• Turbulence modeling

 Classical LES treatment: gradient transport model for turbulent fluxes

$$T_{ij} = -\mu_t \left(\frac{\partial \tilde{u}_i}{\partial x_j} + \frac{\partial \tilde{u}_j}{\partial x_i} - \frac{2}{3} \delta_{ij} \frac{\partial \tilde{u}_k}{\partial x_k} \right) + \frac{2}{3} \delta_{ij} \overline{\rho} \tilde{k}_{SGS}$$

$$\mu_t \text{ is a turbulent viscosity}$$

where:
$$\tilde{k}_{SGS} = \frac{1}{2} \frac{\rho u_i u_i}{\overline{\rho}} - \frac{\tilde{u}_i \tilde{u}_i}{2}$$

• Turbulence modeling

- Classical LES treatment: closure expression for the turbulent viscosity
 - Smagorinsky model

$$\mu_{t} = \overline{\rho} \left(C_{S} \Delta \right)^{2} \underbrace{\sqrt{\frac{1}{2} \left(\frac{\partial \widetilde{u}_{i}}{\partial x_{j}} + \frac{\partial \widetilde{u}_{j}}{\partial x_{i}} \right) \left(\frac{\partial \widetilde{u}_{i}}{\partial x_{j}} + \frac{\partial \widetilde{u}_{j}}{\partial x_{i}} \right)}_{\text{magnitude of the grid-resolved strain rate tensor}}$$

where
$$\Delta = (\Delta x_1 \Delta x_2 \Delta x_3)^{1/3}$$

• Turbulence modeling

- No treatment of buoyancy effects: Rayleigh-Taylor instabilities; reverse cascade of turbulent kinetic energy
 - Example of a pool fire configuration

unstable stratification (will promote mixing)

Example of a ceiling jet configuration

• Turbulence modeling

Near-wall treatment

- Wall-bounded boundary layer flows feature small-scale physics and represent a special challenge for a CFD treatment
- Turbulent boundary layer flows feature sharp gradients of flow velocity and temperature at the wall surface
 - ✓ These gradients need to be evaluated in order to calculate the wall shear stress and wall convective heat flux

$$\tau_{w}(x) = \mu \frac{\partial u}{\partial y} \bigg|_{y=0} ; \dot{q}_{w,c}''(x) = -k \frac{\partial T}{\partial y} \bigg|_{y=0}$$

• Turbulence modeling

- Near-wall treatment
 - Wall-resolved LES: fine-grained simulations in which the wall gradients are captured by the computational grid

 $\Delta y = O(1 \text{ mm})$

$$\dot{q}_{w,c}'' = -k \frac{\partial T}{\partial y} \bigg|_{y=0}$$

Т

• Turbulence modeling

 $\dot{q}''_{w,c}$?

- Near-wall treatment
 - Wall-modeled LES: coarse-grained simulations in which the wall gradients are not captured by the computational grid (*i.e.* are unresolved) and are reconstructed through a wall model

$$\frac{\partial}{\partial t}(\bar{\rho}\tilde{Y}_{k}) + \frac{\partial}{\partial x_{j}}(\bar{\rho}\tilde{Y}_{k}\tilde{u}_{j}) = -\frac{\partial\lambda_{kj}}{\partial x_{j}} + \frac{\partial}{\partial x_{j}}(\bar{\rho}D_{k}\frac{\partial Y_{k}}{\partial x_{j}}) + \underbrace{\overline{\omega}_{k}''}_{\text{mass reaction rate (grid-scale and subgrid-scale)}}_{\text{requires modeling}}$$

- Non-premixed turbulent combustion
 - Fuel composition is often unknown in fire problems, use a representative surrogate fuel (wood, plastic, foam, fabric, *etc*)
 - Global combustion equation (no chemistry)

$$C_n H_m O_p + \{n + (m/4) - (p/2) - (v_{CO}/2) - v_{soot}\}O_2$$

- Non-premixed turbulent combustion
 - Eddy Dissipation Concept model: rate of combustion is limited by fuel-air mixing; explicit treatment of the chemical reaction rates

$$\left| \overline{\dot{\omega}_{F}^{'''}} = \overline{\rho} \times \frac{\min(\tilde{Y}_{F}; \tilde{Y}_{O_{2}} / r_{s})}{\tau_{t}} \right| \quad \text{where} \quad \tau_{t} = C_{\tau_{t}} \times (\frac{\overline{\rho} \Delta^{2}}{\mu_{t}})$$

$$\left| \overline{\dot{q}_{comb}^{\prime\prime\prime}} = \overline{\rho} \times \frac{\min(\widetilde{Y}_F; \widetilde{Y}_{O_2} / r_s)}{\tau_t} \times \Delta H_{comb} \right|$$

Combustion modeling

Diffusion flame extinction

- Different mechanisms
 - Quenching by dilution: flame weakening du to changes in fuel stream or oxidizer stream composition (e.g. air vitiation in under-ventilated fires)
 - Thermal quenching: flame weakening due to heat losses (e.g. heat losses by thermal radiation or by evaporative cooling)
 - Aerodynamic quenching: flame weakening due to flow-induced perturbations (*i.e.* decrease in flame residence time)

- Diffusion flame extinction
 - Single criterion to predict extinction (laminar flame theory)

$$Da = \frac{\tau_{mixing}}{\tau_{chemical}} \le Da_{critical}$$

$$Da = \frac{\tau_{mixing}}{\tau_{chemical}} \sim \frac{(1/\chi_{st})}{\exp(T_a/T_{st})}$$

- Two fundamental limits:
 - ✓ Fast mixing limit: Da is small because χ_{st} is large (e.g. aerodynamic quenching)
 - ✓ Slow mixing limit: Da is small because T_{st} is small (e.g. thermal/dilution quenching)

• Combustion modeling

- Diffusion flame extinction
 - Flammability map with fuel-air mixing rate and flame temperature as coordinates

- Diffusion flame extinction
 - Flame extinction may lead to full extinction or to flame *re-ignition*
 - Different mechanisms for flame re-ignition
 - ✓ premixed auto-ignition
 - ✓ non-premixed auto-ignition
 - ✓edge flame propagation
 - ✓ flame-flame interaction

• Fuel source modeling

- Description of the fuel mass loss rate (MLR)
 - Different approaches
 - *Empirical*: prescribed MLR; variable ignition timing
 - Semi-empirical: MLR described as perturbation of freeburn values with modifications due to smoke/walls thermal feedback and air vitiation
 - Advanced: MLR predicted from gas-to-solid thermal feedback and finite rate decomposition kinetics

• Fuel source modeling

- Description of the fuel mass loss rate (MLR)
 - Finite-rate pyrolysis chemistry model: explicit treatment of thermal decomposition chemistry
 - Thermal degradation across flammable solid described by a local 1D problem in the direction normal to the exposed solid surface

• Fuel source modeling

- Description of the fuel mass loss rate (MLR)
 - Finite-rate pyrolysis chemistry model: explicit treatment of thermal decomposition chemistry
 - Single-step chemistry (and porosity << 1)

 $\underbrace{\text{virgin solid}}_{1 \text{ kg}} \rightarrow \underbrace{\text{volatiles}}_{\eta_g=1-\eta_c} + \underbrace{\text{char}}_{\eta_c}$ $\dot{\omega}_g^{\prime\prime\prime} = (1-\eta_c)(\rho_s Y_{vs})A\exp(-E/RT_s)$

$$\rho_s = \frac{m_s}{V_s + V_g} \qquad Y_{vs} = \frac{m_{vs}}{m_s}$$

• Fuel source modeling

- Description of the fuel mass loss rate (MLR)
 - Finite-rate pyrolysis chemistry model: explicit treatment of thermal decomposition chemistry
 - Governing equations (without volume change)

• Fuel source modeling

• Description of the fuel mass loss rate (MLR)

- Finite-rate pyrolysis chemistry model: explicit treatment of thermal decomposition chemistry
- Governing equations (with volume change)

(Lautenberger & Fernandez-Pello, *Proc. 10th Intl. Symp. Fire Safety Science*, IAFSS, 2011; see also <u>http://code.google.com/p/gpyro/</u>)

$$\frac{\partial}{\partial t}(\rho_s \Delta x) = -\dot{\omega}_g^{\prime\prime\prime} \Delta x$$
$$\frac{\partial}{\partial t}(\rho_s h_s \Delta x) = \frac{\partial}{\partial x}(k_s \frac{\partial T_s}{\partial x})\Delta x - \dot{\omega}_g^{\prime\prime\prime} \Delta H_v \Delta x$$
$$\rho_c^0 \frac{\partial}{\partial t}(\Delta x) = \frac{\eta_c - (\rho_c^0 / \rho_{vs}^0)}{1 - \eta_c} \dot{\omega}_g^{\prime\prime\prime} \Delta x$$

• Fuel source modeling

- Description of the fuel mass loss rate (MLR)
 - Finite-rate pyrolysis chemistry model: explicit treatment of thermal decomposition chemistry
 - Fuel mass loss rate

$$\underbrace{\operatorname{virgin \ solid}}_{1 \text{ kg}} \rightarrow \underbrace{\operatorname{volatiles}}_{\eta_g = 1 - \eta_c} + \underbrace{\operatorname{char}}_{\eta_c}$$
$$\dot{\omega}_g^{\prime\prime\prime} = (1 - \eta_c)(\rho_s Y_{vs})A \exp(-E / RT_s)$$

$$\dot{m}_f''(t) = \int_{-\Delta(t)}^0 \dot{\omega}_g'''(x,t) dx$$

• Fuel source modeling

- Description of the fuel mass loss rate (MLR)
 - Example: PVC (Ghorbani & Trouvé, model from Stoliarov)

Virgin Material Properties			Char Material Properties			Reaction Parameters		
ρ	1729.7	kg/m³	ρ	397.8	kg/m³	ΔH_{v}	3.79E+05	J/kg
С	1111.3	J/kg-K	С	3894.3	J/kg-K	Α	2.98E+13	1/s
k	0.17	W/m-K	k	0.10	W/m-K	Ε	1.93E+5	J/mol
Е	0.9		Е	0.9				
			η_C	0.23			•	

Fuel source modeling

- Description of the fuel mass loss rate (MLR)
 - Example: PVC (Ghorbani & Trouvé, model from Stoliarov)

• Fuel source modeling

- Description of the fuel mass loss rate (MLR)
 - Example: PVC (Ghorbani & Trouvé, model from Stoliarov)

• Fuel source modeling

- Description of the fuel mass loss rate (MLR)
 - Example: PVC (Ghorbani & Trouvé, model from Stoliarov)

• Fuel source modeling

- Description of the fuel mass loss rate (MLR)
 - Finite-rate pyrolysis chemistry model: explicit treatment of thermal decomposition chemistry
 - Unknown model parameters: $(k, \rho, c, \varepsilon)_{vs}, (k, \rho, c, \varepsilon)_c, \eta_c, A, E, \Delta H_v$
 - Model parameters determined by comparison between model predictions and experimental results from micro-scale tests (*e.g.* thermogravimetric analysis) and material-scale tests (*e.g.* cone calorimeter, fire propagation apparatus)

• Motivation: soot contributes to, and often dominates thermal radiation transport in fires

Soot modeling

- Motivation: thermal radiation transport
 - Hot soot: emitter of radiation energy (responsible for yellow glow from flames and thereby responsible for flame luminosity)
 - Cold soot: absorber of radiation energy (responsible for flame opacity)

• Soot modeling • Soot yield model $C_n H_m O_p + \{n + (m/4) - (p/2) - (v_{CO}/2) - v_{soot}\}O_2$

$$= \frac{1}{m}O_p + \frac{1}{n} + \frac{1}{m}(m/4) - \frac{1}{(p/2)} - \frac{1}{(v_{CO}/2)} - \frac{1}{v_{soot}}O_2$$

$$\Rightarrow (n - v_{CO} - v_{soot})CO_2 + \frac{1}{(m/2)}H_2O + \frac{1}{v_{CO}CO} + \frac{1}{v_{soot}}C_{soot}$$

$$= \frac{1}{m}O_p + \frac{1}{(m/4)} - \frac{1}{(p/2)}O_2 + \frac{1}{(m/2)}O_2 + \frac{1}{($$

$$\eta_{soot} = \frac{v_{soot} \times W_{soot}}{W_{C_n H_m O_p}}$$

$$f_{v, \max}$$

$$f_{v, \max}$$

Soot modeling

- Description of soot formation/oxidation
 - Smoke point (SP): critical flame length in a laminar jet diffusion flame configuration above which the flame experiences a transition from sooting to smoking conditions

Soot modeling

- Description of soot formation/oxidation
 - Smoke point (SP): critical flame length in a laminar jet diffusion flame configuration above which the flame experiences a transition from sooting to smoking conditions

• Soot modeling

- Laminar smoke point
 - A useful measure of a fuel tendency to form soot (sooting tendency is inversely proportional to smoke point)
 - Typical values of SP
 - ✓ Methane: infinity
 - 🗸 Ethane: 0.24 m
 - ✓ Ethanol: 0.227 m
 - ✓ Polymethylmethacrylate (PMMA): 0.105 m
 - ✓ Ethylene: 0.097 m
 - ✓ Polypropylene (PP): 0.05 m
 - ✓ Polystyrene (PS): 0.015 m

• Soot modeling

One-equation model

$$\frac{\partial}{\partial t}(\rho_s \overline{f_v}) + \frac{\partial}{\partial x_i}(\rho_s \overline{f_v} \widetilde{u}_i) = -\frac{\partial}{\partial x_i}(\rho_s \overline{f_v} \widetilde{V_{t,i}}) + \frac{\partial}{\partial x_j}(\frac{\rho_s}{\overline{\rho}} \frac{\mu_t}{Sc_t} \frac{\partial f_v}{\partial x_j}) + \overline{\omega}_s'''$$

Thermophoretic transport

✓ Small particles in a temperature gradient are driven from high to low temperature regions; free-molecular regime ($Kn = (2\lambda/d) >> 1$; $\lambda = 65$ nm)

$$V_{t,i} \approx -0.54 \nu \frac{1}{T} \frac{\partial T}{\partial x_i}$$

• Model parameters for $\overline{\dot{\omega}}_{s}^{''}$ are designed to be multi-fuelcompliant using an assumed correlation with laminar smoke point (SP) measurements (Delichatsios, *Combust. Sci. Technol.* 1994, Lautenberger, de Ris, Dembsey, Barnett & Baum, *Fire Safety J.* 2005)
Radiation modeling

- Motivation: radiation transport generally dominates the gasto-fuel-source thermal feedback
 - Radiation transport calculated via solving the radiative transfer equation
 - Assumptions
 - ✓Non-scattering medium
 - Spectrally-averaged (grey medium) or spectrallyresolved radiation properties
 - Planck mean absorption coefficient function of CO_2 , H_2O and soot

Radiation modeling

Radiative transfer equation (RTE)

5/29/18

74

Radiation modeling

• Radiative transfer equation (RTE): without scattering

Mean absorption coefficient [m⁻¹]

$$\kappa = p(x_{H_2O}a_{H_2O} + x_{CO_2}a_{CO_2}) + \kappa_{soon}$$

- ✓ $a_{p,i}$ is the Planck mean absorption coefficient for species *i* [m⁻¹ atm⁻¹]. $a_{p,i}$ is a function of temperature and is obtained from databases for radiative properties.
- $\checkmark \kappa_{soot}$ is the soot mean absorption coefficient [m⁻¹]

$$\kappa_{soot} = C_{soot} \times f_v T$$

• Radiation modeling

- Solution methods for the radiative transfer equation (RTE)
 - **Discrete Transfer Method** (DTM, Lockwood & Shah, *Proc. Comb. Inst.*, 1981): a ray-tracing approach in which the RTE is solved along a set of representative rays
 - Discrete Ordinate Method (DOM, Chandrasekhar, *Radiative Transfer*, Dover, 1950): an Eulerian-grid-based approach in which the RTE is solved for a set of elementary angular regions
 - Monte Carlo Method (MCM): a Lagrangian particulate approach in which the RTE is replaced by a set of probabilistic rules that describe the transport of photons

Radiation modeling

- Solution methods for the radiative transfer equation (RTE)
 - High computational cost (typically multiplies the cost of CFD by a factor of at least 2)
 - An elliptic problem that usually requires an iterative solution

Radiation modeling

- Radiative transfer equation (RTE)
 - Radiative heating/cooling rate (in gas energy equation) [W/m3]

$$\frac{dI}{ds} = \kappa \left(\frac{\sigma T^4}{\pi}\right) - \kappa I$$
$$\dot{q}_{rad}^{\prime\prime\prime} = -\int_{4\pi \text{ sr}} \frac{dI}{ds} d\Omega = -4\kappa (\sigma T^4) + \int_{4\pi \text{ sr}} \kappa I d\Omega$$

5/29/18

78

Radiation modeling

- Radiative transfer equation (RTE)
 - LES framework

$$\overline{\dot{q}_{rad}^{\prime\prime\prime}} = -4\overline{\kappa}(\sigma T^4) + \int_{4\pi \text{ sr}} \overline{\kappa I} \, d\Omega$$

Radiation modeling

- Radiative transfer equation (RTE)
 - Closure model for RTE (LES framework): the prescribed radiant fraction approach

$$\nabla \bar{I}.\vec{s} = \chi_{rad} \times (\frac{\dot{q}_{comb}^{\prime\prime\prime}}{4\pi}), \text{ if } \dot{q}_{comb}^{\prime\prime\prime} > 0$$
$$\nabla \bar{I}.\vec{s} = 0, \text{ if } \dot{q}_{comb}^{\prime\prime\prime} = 0$$

• Radiant fraction χ_{rad} is treated as an input quantity to the fire model and is user-prescribed

Radiation modeling

• Radiant fraction χ_{rad} is generally an input quantity

White, Link, Trouvé, Sunderland, Marshall, Sheffel, Corn, Colket, Chaos & Yu, *Fire Safety J.*, 2015

State of the Art

• Examples

	FireFOAM ¹	FDS ²
Scheme	Second-order accurate, finite volume solver with implicit time integration	Second-order accurate, finite difference solver with explicit time integration
Turbulence	<i>k</i> -eqn model (default), dynamic Smagorinsky, WALE, Deardorff	Deardorff (default), dynamic Smagorinsky
Combustion	Global combustion eqn, Eddy Dissipation Concept (EDC)	Global combustion eqn, Eddy Dissipation Concept (EDC)
Radiation	Finite volume method (prescribed radiant fraction, grey medium model or a spectrally-resolved wide band model)	Finite volume method (prescribed radiant fraction, grey medium model or a spectrally-resolved wide band model
Soot	Flamelet-based model	Soot yield model
Mesh	Structured and unstructured grid	Structured (Cartesian) grid

¹ FM Global (USA), FireFOAM, Available from: <u>https://github.com/fireFoam-dev/fireFoam-2.2.x</u> ² NIST (USA), FDS, Available from: <u>https://code.google.com/p/fds-smv/</u>

State of the Art

5/29/18

(Wang, Meredith, Zhou, Chatterjee, Xin, Chaos, Ren & Dorofeev, *Proc. 11th Intl. Symp. Fire Safety Science*, IAFSS, 2014)

- **Example:** Coarse-grained LES (engineering-level) (FireFOAM)
 - FM Global full-scale flame spread tests
 - Flame structure: $L \sim O(10 \text{ m})$; $L_{eddy} \sim O(10 \text{ cm})$; $U_{eddy} \sim O(1-10 \text{ m/s})$

State of the Art

5/29/18

(Gardner, Horst, Pfarr, Scott, Steranka, West, Wood, Zeller, Isman, Trouvé, UMD, 2018)

- Example: Coarse-grained LES (engineering-level) (FDS)
 - UMD side-by-side burn test
 - Flame structure: $L \sim O(1 \text{ m})$; $L_{eddy} \sim O(10 \text{ cm})$; $U_{eddy} \sim O(1 \text{ m/s})$

State of the Art

5/29/18

(Vilfayeau, White, Sunderland, Marshall, Trouvé, *Fire Safety J.*, 2016)

- **Example:** Fine-grained LES (research-level) (FireFOAM)
 - UMD experiment on flame suppression by inert gas or water mist
 - Flame structure: $L_f \sim 0.5 \text{ m}$; $L_{eddy} \sim O(1-10 \text{ cm})$; $U_{eddy} \sim O(1 \text{ m/s})$

State of the Art

• **Example:** Fine-grained LES (research-level) (FireFOAM)

- University of Waterloo experiment on methanol pool fire
- Flame structure: $L_f \sim 0.5 \text{ m}$; $L_{eddy} \sim O(2-30 \text{ cm})$; $U_{eddy} \sim O(1 \text{ m/s})$

5/29/18

(Marchand, Verma, Trouvé, *unpublished.*, 2018)

Conclusion

• The fire modeling community has experienced a remarkable growth in the past two decades

- Due in particular to the development of FDS (NIST) and FireFOAM (FM Global) as well as to the development of opensource CFD software
- Fire modeling features several technical challenges
 - Relatively slow, buoyancy-driven flow
 - Boundary layer flames
 - Flame extinction/ignition
 - Modeling of solid fuel sources (pyrolysis processes)
 - Soot formation
 - Spectrally-resolved radiation and radiation-turbulence interactions
 - Water spray
 - Flame and smoke chemistry effects (toxicity)

Conclusion

 The fire modeling community faces an organizational challenge

- The fire modeling community is small, fragmented, geographically dispersed, without a history of well-defined standards and without a consensus on well-defined objectives
- There is a need for a coordinated effort to organize and strengthen the fire modeling community

MaCFP

- The IAFSS Working Group on Measurement and Computation of Fire Phenomena (<u>http://www.iafss.org/macfp/</u>)
 - A forum between experimentalists and modelers to establish a common framework around the topic of CFD validation
 - A regular series of workshops
 - A list of community-approved target experiments
 - A data repository (<u>https://github.com/MaCFP</u>)