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A SHORT MOVIE TO GET STARTED
— https://www.youtube.com/watch?v=IQZ fv_NhAK

GHENT
UNIVERSITY



REFERENCES

- D. Drysdale, An Introduction to Fire Dynamics, 3rd Ed., Wiley
(2011).

- J.G. Quintiere, Fundamentals of Fire Phenomena, Wiley (2006).
- The SFPE Handbook of Fire Protection Engineering (2016).

- B. Merci and T. Beji, ‘Fluid Mechanics Aspects of Fire and Smoke
Dynamics in Enclosures’, CRC Press (2016).

N

GHENT
UNIVERSITY .



CONTENTS

* Ignition

* Fire growth

» Compartment fire dynamics

* The importance of the flow field

* There's (much) more
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IGNITION
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FIRE TRIANGLE

— Necessary ingredients: fire triangle.
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FIRE TRIANGLE

o Fuel: anything that can burn.

o Oxidizer: oxygen concentration in air is sufficient to sustain
burning.

o Heat: ignition required. After that: heat flux from flames (and
perhaps smoke and compartment boundaries).
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THERMODYNAMICS

* |gnition is required to overcome ‘activation energy'.

* Piloted ,?CR spontaneous ignition.

oxidizer

Fuel and /\ @vation en@

Chemical enthalpy
transformed into

Combustion sensible enthalpy
products

HHH >
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PILOTED IGNITION

Fire spread in car parks

+00:00:00:20
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IGNITION OF GASES

 Imbalance betV\_/-eenLHRli and heat loss rate.
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FLAMMABILITY LIMITS

* Optimum for combustion: around stoichiometry.

GHENT
UNIVERSITY

Spark energy (mJ)

<
L e

0.2

;
l LIMITS OF l
“® L AMMABILITY "™

| Ignitability
X limits ™

\\

2 4 6 8 10 12 14 16 18
Volume % methane in air

11



IGNITION OF GASES

 Details matter.
* Above AIT: spontaneous ignition.
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IGNITION OF LIQUIDS

— Combustible liquids are classified by their ‘flashpoint’: the lowest
temperature at which a flammable vapour/air mixture exists at
surface.

Uniform vapour | Height above
! concentration liquid surface
|1 “ TR INERINIRINE Vapour concentration
(a) (b) (c)
]
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IGNITION OF SOLIDS

— There is no direct equivalent for the ‘flashpoint’: pyrolysis is
irreversible.

— Still: reasonably similar phenomena (for flaming combustion) =
‘Iignition temperature’ (note: this is NOT a material property).

— The mass flow rate must be sufficient to sustain combustion
(‘critical mass flow rate’).

— Critical heat flux: no ignition below that (incoming) heat flux.
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IGNITION OF SOLIDS
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FIRE PROPAGATION APPARATUS (FPA)

— Developed at FM Global.

— Uses CDG (carbon dioxide generation) and OC
(oxygen consumption) calorimetry to determine HRR
(see later).

— Measures flammability characteristics under various air
flow (ventilation) conditions.
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FIRE PROPAGATION APPARATUS (FPA)
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FIRE PROPAGATION APPARATUS (FPA)

— Time to ignition for a thermally thick material:

JIA 2

Zpkc(Tig — TO)
(CIZ o XQZr)Z

— Critical heat flux (CHF): gz, (kW/m?).

— Heat losses are important - flammabillity

measurements are sample holder/apparatus
dependent.

Lig,thick =
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FIRE PROPAGATION APPARATUS (FPA)

— Underlying assumption: radiation is dominant (=2
important to minimize other heat losses).
— Thermal response parameter (TRP):

- 1/2
TRP = (Z pkc)  (Tyg — To)

— Note: Materials behave as thermally thick at high
heating rates -> most typical for fires.
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FIRE PROPAGATION APPARATUS (FPA)

— TRP relates to time to ignition:
— Higher value - less prone to ignition;
— Lower value - more prone to ignition.

— Note: easy ignition means fast flame spread (see later).
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FIRE PROPAGATION APPARATUS (FPA)

— CHF and TRP determined from measurements:

- gpke(Tyg —To)” 1 g, — CHF

Ligithick = — (7, =, - -
o (qe - XqCT)Z \/tig,thick I'RP
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FIRE PROPAGATION APPARATUS (FPA)
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Fig. 36.6 Square root of
the inverse of time to
1ignition versus external
heat flux for 100-mm x
100-mm x 25-mm-thick
poly Imethacrylate
PMMA) slab with a
blackened surface. Data
measured in the Fire

Propagation Apparatus [31]
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FIRE GROWTH




FLAME SPREAD OVER SURFACES

» Concept: advancing ignition ‘front’ (where the temperature reaches
the ‘ignition temperature’).

» Strong impact of the flow field, compared to the direction of the
flame spread.

» Strong difference between thermally thin and thermally thick.
* The heat required for pyrolysis is supplied by the flame.
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THERMODYNAMICS

hC
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HEAT FEEDBACK

 Combustion is an exothermic process > heat is generated.

» Heat of combustion AH.: the amount of energy (in J/kg or kd/kg or
MJ/kg) released by complete combustion of 1 kg of fuel.

* This is related to the (theoretical) ‘fire load’ inside an enclosure
(see later).
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FIRE — SOME BASICS
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Table 1.13 Heats of combustion® of selected fuels at 25°C (298 K)

—AH, —AH, —AH, 4t —AH, o
fmol)  (kilg) - (kl/g(ir)  (ki/g(0y)
Carbon monoxide CO 283 10.10 4.10 17.69
Methane CH, 800 50.00 2.91 12.54
Ethane CaHg 1423 47.45 2.96 11.21
Ethene C;H, 1411 50.35 3.42 14.74
Ethyne C;H; 1253 48.20 3.65 15.73
Propane C;Hg 2044 46.45 2.97 12.80
n-Butane n-C4Hyo 2650 45.69 2.97 12.80
n-Pentane n-CsHj, 3259 45.27 297 12.80
n-Octane n-CgHjg 5104 44.77 2.97 12.80
c-Hexane c-CgHjp 3680 43 .81 2.97 12.80
Benzene CsHs 3120 40.00 3.03 13.06
Methanol CH;0H 635 19.83 3.07 13.22
Ethanol C,HsOH 1232 26.78 2.99 12.88
Acetone (CH,),CO 1786 30.79 3.25 14.00
D-Glucose CeH;206 2772 15.4 3.08 13.27
Cellulose — 16.09 3.15 13.59
Polyethylene — 43.28 293 12.65
Polypropylene - 43.31 2.94 12.66
Polystyrene — 39.85 3.01 12.97
Polyvinylchloride —_ 16.43 2.98 12.84
Polymethylmethacrylate —_ 24.89 3.01 12.98
Polyacrylonitrile — 30.80 3.16 13.61
Polyoxymethylene - 15.46 3.36 14.50
Polyethyleneterephthalate - 22.00 3.06 13.21
Polycarbonate — 29.72 3.04 13.12
Nylon 6,6 — 29.58 2.94 12.67

2 The initial states of the fuels correspond to their natural states at normal temperature and pressure (298°C
and 1 atm pressure). All products are taken to be in their gaseous state—thus these are the net heats of

combustion.



FIRE — SOME BASICS < T

* Note: heat of combustion per kg oxygen or per kg air

consumed is independent of the fuel for many (hydrocarbon)
fuels: AH, =13kJ/g O, AH_, =3kJ/g air

c,air

e Use:

* Ventilation-controlled fires.

» Oxygen-depletion calorimetry to determine HRR:
0. =(021-n,)V.10%p, .AH,,
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FLAME SPREAD OVER SURFACES

* Opposed flow / vertically downward — thermally thick

(A « |
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—~ —
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FLAME SPREAD OVER SURFACES

* Opposed flow / vertically downward — thermally thick:
kr
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FLAME SPREAD OVER SURFACES

» Concurrent flow / vertically upward: thermal runaway -
accelerating flame spread.

flame

BT . CoL e

GHENT : ’ .
UNIVERSITY X

31



FLAME SPREAD OVER SURFACES

* Thermally thin fuels: time to ignition scales linearly with the
thickness of the material = faster flame spread for thinner
materials. Note: flames on both sides - even faster flame spread.

— flame

T= Tamb_’ds y T= Tamb_> l l q”l i T= Tamb
] | o)
I < Vs T = Tign L T = Tignl v, > s : | L
' pre-neat

one

Xp
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REACTION-TO-FIRE TESTS

» Classification of products in ‘end use’ application.
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Smoke production Falling droplets

Al No contribution to fire

A2 Almost no contribution to fire

B Very limited contribution to fire
C Limited contribution to fire
D Import contribution to fire
E Very import contribution to fire

F No performance determined

s1 limited smoke
production;

s2 average smoke
production;

s3 large smoke production

sl,s2,s3
sl, s2,s3
s1,s2,s3

dO no droplets;

d1 burning droplets
< 10s;

d2 burning droplets
> 10s

dO, d1, d2
dO, d1, d2
dO, d1, d2
d2
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SINGLE BURNING |ITEM (SBI

— Corner set-up:
— Long panel: 1T mx 1.5 m;
— Short panel: 0.5 mx 1.5 m;

— Triangular burner — 30 kW.
— Exposure during 20 minutes.

GHENT
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SINGLE BURNING ITEM (SBI

Gas analysis

(O,, CO, CO,) Smoke
measurement

G}i""-q (3 e

Flow measurement
 Enclosure
x.-"

I
1-1'1-1.
||||
||||
||||
||||
i)

|
II|I

1/ Ignition
source
T

~ . Trolley with
/ specimen holder
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ROOM CORNER (RC)

— Room corner test — EN 9750:

— Test sample mounted on the inside of the room, on the
celling and on all the walls except for the wall with the
door opening.

— Propane gas burner, located in one of the corners,
produces a heat release rate of 100 kW during 10
minutes, and then 300 kW the following 10 minutes.

GHENT
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ROOM CORNER (RC

Euroclass | Flashover in the 3‘“':'!“: optical Gas analysis (0,, CO, CO,)
Room Corner D Flow measurment E’;hi‘fylmd
Reference test Exhaust gases gue ( T
N Saaug
Al No flashover Gas burner
A2 No flashover 0
P s 1._T b S T
B No flashover e ~
<l
C Flashover between el
10 - 20 minutes 5 (\ ~ —
D Flashover- between g E;HH
2 to 10 minutes T
- Flashover S ™ ?fﬂﬁgﬂﬂ”ﬂgﬂ
before 2 minutes / f ,LomxZim
3 ok
NPD No data 2 /
= F _
T available Sy
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ROOM CORNER (RC)

— Room corner test — EN 9750:

— Combustion gases collected through a hood -
measurement of heat release rate and smoke production
rate.

— Flame spread along walls and celling observed visually.

— If flames emerge from the door opening: flashover - test
terminated. HRR at flashover is generally about 1 MW.
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ROOM CORNER (RC)
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COMPARTMENT FIRE
DYNAMICS




HEAT FEEDBACK: FREE FIRE PLUME

smoke plume
\‘ (k\%\ / rad, conv
/ rad ,
\ > environment
f\\l‘ ; ‘ ‘ h@ mAH rad, conv rad, conv, cond

o '( 'L )' N ;Q; cond, conv

{

Figure 1.4 Schematic representation of a burning surface, showing the heat and mass transfer fu el inte riO r
processes. m”, mass flux from the surface: Qf, heat flux from the flame to the
surface; Q;, heat losses (expressed as a flux from the surface)
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HEAT FEEDBACK: FREE FIRE PLUME

 Notations:

« Mass flow rate per unit area (kg/(m?2s)): m~
« Heat flux from the flames per unit area (W/m?):

- Heat losses per unit area (W/m?2): Q;
» Mass flow rate (kg/s): m (= m»Ag)

* Heat of combustion (J/kg): AH,.

N
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FIRE — SOME BASICS < o

» Heat feedback loop:

» Heat generated per unit time (W/KW/MW): heat release rate
(HRR): Q = yrivArAH,:

» y: completeness of combustion;
 1h~: mass flow rate per unit area (kg/(m?2s));
« Ap:area involved in the fire (m?)

* AH_: theoretical heat of combustion (J/kg, kd/kg, MJ/kg).
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FIRE — SOME BASICS X7 s
» Heat feedback loop (ctd.):

* Heat required per unit time is related to the fuel mass loss rate:

dinnet
Ly

mu —

» L. latent heat of vaporization / heat of pyrolysis (J/kg, kJ/kg,
MJ/kQg)

* Jinnet: Net incident heat flux onto the fuel surface (in W/m?,
kW/m2, MW/m?).

N
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FIRE — SOME BASICS < T

» Heat feedback loop (ctd.):

 Combination: heat release rate (HRR):

: : din, , AH,
Q — Xm"AFAHC = X n;lnet AFAHC — qu,netAFL_

(% (%

~fe. ‘combustibility ratio’.

(%

N
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FIRE DEVELOPMENT IN ENCLOSURES

« Example:

GHENT
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FIRE — SOME BASICS X7 s
e D

 For fire dynamics, often the heat release rate (in W or
kW or MW) is more important than the total energy
contents (fire load). [Note: for the stability of structures,
the fire load is important, as it affects the duration of the

fire.]

GHENT
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FIRE DEVELOPMENT IN ENCLOSURES

Heerr
Lv

: : : 1 A
+ Basic equation: Q = x"2 ArAH, = dinnecAr

(%

* Two main effects: heat transfer and ventilation are key!

* |ncreased thermal feedback (see next slide) = increased net
incident heat flux (i, net)-

* Possibly reduced ventilation (air supply) = reduction in
completeness of combustion (x or AH_ .¢r).

=
I
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FIRE DEVELOPMENT IN ENCLOSURES

Fire spread in car parks

[ & youtube.com is now full screen ]

R—

= +00:04:10:18

GHENT |
U N IVERSITY Pl ) 0:22/4:50 Scroll for details
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FIRE DEVELOPMENT IN ENCLOSURES

rad, conv .
smoke layer > walls + ceiling
rad, conv
conv
rad, conv rad
rad

rad

smoke plume
cond, conv

rad rad, conv

v

> environment
rad
mAH rad, conv rad, conv, cond

cond, conv
=
1
GHENT fuel interior
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FIRE DEVELOPMENT IN ENCLOSURES

* I[mportant factors that determine the fire development in
enclosures:

 The geometry and material of the enclosure (strong impact on
thermal heat feedback).

 The ventilation conditions.

* The fuel (type, amount and surface area).

N
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FIRE DEVELOPMENT IN ENCLOSURES - HEAT

» Heat transfer by conduction:

* Important in solids (there is also conduction in fluids, but in case of motion it is
masked by convection).

» Heat flows from high temperature to low temperature.
« Equation: ‘Fourier's law’: § = —kVT = —AVT

* Thermal conductivity (k, A): W/(m.K).

» In 1 direction: Q,y,q = —kAE = —AA %, with A the area through which heat is

transferred.

=
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FIRE DEVELOPMENT IN ENCLOSURES - HEAT

» Heat transfer by conduction:

Table 2.1 Thermal properties of some common materials®

GHENT
UNIVERSITY

Material k Cp P o kpc),
(WmK)  (J/kg.K) (kg/m*) (m?/s) (W2.s/m*K?)
Copper 387 380 8940 1.14 x 107 1.3 x 10°
Steel (mild) 45.8 460 7850 1.26 x 1073 1.6 x 108
Brick (common) 0.69 840 1600 5.2 x 1077 9.3 x 10°
Concrete 0.8-1.4 880 1900-2300 5.7 x 1077 2 x 106
Glass (plate) 0.76 840 2700 3.3x1077 1.7 x 10°
Gypsum plaster 0.48 840 1440 4.1 x 1077 5.8 x 10°
PMMA? 0.19 1420 1190 1.1 x 1077 3.2 x 10°
Oak* 0.17 2380 800 8.9 x 10~% 3.2 x 10°
Yellow pine‘ 0.14 2850 640 8.3 x 1078 2.5 x 10°
Asbestos 0.15 1050 577 2.5 x 1077 9.1 x 10
Fibre insulating board 0.041 2090 229 8.6 x 1078 2.0 x 10
Polyurethane foam? 0.034 1400 20 1.2 x 106 9.5 x 102
Air 0.026 1040 1.1 2.2 x 1073 _

4 From Pitts and Sissom (1977) and others. Most values for 0 or 20°C. Figures have been rounded off.

b Polymethylmethacrylate. Values of k, ¢ p and p for other plastics are given in Table 1.2.

¢ Properties measured perpendicular to the grain.
4 Typical values only.
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FIRE DEVELOPMENT IN ENCLOSURES - HEAT

* Heat transfer by convection:

N

T
GHENT

Heat transfer to or from a solid by motion of a fluid in contact with that solid.

Empirical relationship (Newton): qcony = hAT

Convection coefficient (h), in W/(m?K): this is NOT a material property: it also
depends on the system, the geometry, the fluid and flow parameters.

Range of values for h : 5-25W/(m?K) (free convection) and 10-500W/(m?K)
(forced convection in air).

Q..n., = hAAT, with A the area through which heat is transferred.

UNIVERSITY
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FIRE DEVELOPMENT IN ENCLOSURES - HEAT

» Heat transfer by radiation:

» Stefan-Boltzmann: the total energy emitted per unit time and per unit
area by a body is proportional to its temperature (in K) to the fourth
power: E =eoT*

« ¢: Stefan-Boltzmann constant (5.67 10-SW/(m?K#)).

» g: emissivity (non-dimensional). € = 1: black body.

N
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FIRE DEVELOPMENT IN ENCLOSURES - HEAT

GHENT
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Table 9.5 Critical temperature for different exposure conditions

Type and period Effect Temperature
of exposure °C)
Radiation Severe skin pain 1851
Conduction (metal)
(1 second) Skin burns 60
Convection (30 minutes) Hyperthermia 100
Convection (< 5 minutes)  Skin/lungs burns

| by hot gases 120
Convection (< 1 minute) Skin/lungs burns

by hot gases 190

+ black-body: 2.5 kW m™
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FIRE DEVELOPMENT IN ENCLOSURES - HEAT

» Heat transfer by radiation:

« Radiative heat exchange between bodies: depends on the temperature,
emissivities (absorptivities) and the geometry (i.e., how large are the
surfaces and how do they ‘'see’ each other).

* View factor / configuration factor ¢: determines the fraction of incident
radiation, stemming from the emitted radiation (emission is in all
directions in principle) = for black bodies: @:i-; = op(T{ - T3)

N
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FIRE DEVELOPMENT IN ENCLOSURES - HEAT

Source: MSc thesis Toni Christiansen (DTU)
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Direct flame
contact
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_ Radiative

Convective
heat transter

heat transterct

Figur 12 — Brandspredning fra bil til bil
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FIRE DEVELOPMENT IN ENCLOSURES - HEAT

Fire spread in car parks o »

. +00:04:36:11
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FIRE DEVELOPMENT IN ENCLOSURES - HEAT

e Heat accumulation In solids:

« Mass density (p, kg/m?3): more mass per unit volume means more heat
IS needed for a change in temperature - more heat accumulation is
possible.

» Specific heat, aka heat capacity (c, J/(kg.K)): indicates how much heat
IS required to increase the temperature of 1 kg materialby 1 K/ 1 °C -
If ¢ is higher, more heat accumulation is possible.

* The product pkc is called ‘thermal inertia’.

N
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FIRE DEVELOPMENT IN ENCLOSURES - HEAT

e Heat accumulation In solids:

* If pkc is low, the temperature of the material rises quickly - the
temperature of the solid (ceiling, wall, floor) can follow the gas
temperature (which rises due to the fire) well = small temperature
differences - less heat is taken from the gas phase - more heat is

available for the pyrolysis / evaporation - a quicker fire development is
possible.

* Vice versa is pkc is high.

* Note: passive housing (although airtightness is more important).

N
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FIRE DEVELOPMENT IN ENCLOSURES - HEAT

Steel

Brick

\Wood

Insulation

Human
skin
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FIRE DEVELOPMENT IN ENCLOSURES - HEAT
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Table 2.1 Thermal properties of some common materials®

Material k Cp P o kpcp,

WimK)  (kgK)  (kg/md) (m?/s) (W2.5/m*K?)
Copper 387 380 8940 1.14 x 10~ 1.3 x 10°
Steel (mild) 45.8 460 7850 1.26 x 1073 1.6 x 108
Brick (common) 0.69 840 1600 5.2 x 1077 9.3 x 10°
Concrete 0.8-1.4 880 19002300 5.7 x 1077 2 x 108
Glass (plate) 0.76 840 2700 3.3x1077 1.7 x 10°
Gypsum plaster 0.48 840 1440 4.1 x 10°7 5.8 x 10°
PMMA? 0.19 1420 1190 1.1 x 1077 3.2 x 10°
Oak*¢ 0.17 2380 800 8.9 x 1078 3.2 x 10°
Yellow pine‘ 0.14 2850 640 8.3 x 1078 2.5 x 10°
Asbestos 0.15 1050 577 2.5 x 1077 9.1 x 104
Fibre insulating board 0.041 2090 229 8.6 x 1078 2.0 x 10
Polyurethane foam“ 0.034 1400 20 1.2 x 1078 9.5 x 10?
Air 0.026 1040 1.1 2.2 x 1075 —

4 From Pitts and Sissom (1977) and others. Most values for 0 or 20°C. Figures have been rounded off.
b Polymethylmethacrylate. Values of k, ¢ p and p for other plastics are given in Table 1.2.

¢ Properties measured perpendicular to the grain.

4 Typical values only.
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FIRE IN ENCLOSURES — VENTILATION

* Flammability:

 Simplified chemical reaction: F(uel) + O(xidizer) — P(roducts)

» ‘Stoichiometric conditions’: there is just enough oxidizer to allow
complete reaction of all the fuel 2> maximum temperature.

 Fuel lean: over-ventilated, ‘fuel-controlled’.
* Fuel-rich: under-ventilated, ‘ventilation-controlled’.

* Too little fuel or too little oxygen: not flammable anymore.

N
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FIRE IN ENCLOSURES — VENTILATION

* Fully-developed phase: is typically ventilation-controlled.

WA

* |[mportance of the ‘opening factor’: 0.F. = "
T

» A: total surface area of the ventilation openings;
* H: height of the ventilation openings (assumed unique);

» Ar: total area for heat exchange in the enclosure.

N
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FIRE IN ENCLOSURES — VENTILATION

* Denominator: linked to heat losses.

* Numerator: Bernoulli's equation = infloWw of air > HRR (VC).
H

C

1 Smoke and flames

Post-flash-over fully developed fire Zy

- = = = === —— e T R Ty eppuepuppy WAy Sy gy U ES  SE

Zbottom
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FIRE IN ENCLOSURES — VENTILATION

 Numerator: Bernoulli's equation.

GHENT
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Ztop
Moyt = Cd,outf P

ZN

2

Moyt = 5 Cd,outpW

3

ZN — Zpottom (Tamb

Ztop — 4N

. 2
Moyt = § Cd,outp

2 (pa;b — 1) g(z —zy)W(z)dz

\

T
2 ( — 1) g(ztop — ZN)3/2

Tamb

1/3

WH3/2 = AVH
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FIRE IN ENCLOSURES — VENTILATION

* The opening factor determines the expected temperature. [Does
it?]

Tmax (OC)

1000
\
|

500
—

Regime Il Regime |

N

GHENT 0 10 20 30 40
UNIVERSITY 1/0.F.




FIRE DEVELOPMENT IN ENCLOSURES - STAGES

* Note: ‘regime II' fires strongly depend on the flows (‘momentum
driven’).

* Many different types of fire are possible, particularly in large
compartments (growing; travelling; evolution to flash-over).

* This is a very lively research area (e.g., work done at UQ):

- Travelling fire: == =~ 1;
VBo

- Growing fire: =& > 1;
VBo

- Fully developed fire: == — oo,
VBo

N
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Courtesy dr. Vinny Gupta

* Immense body of experimental and theoretical research from the 1950s to 1970s
» Classification of fully-developed fires into two distinct regimes based on the ratio of the

opening area and enclosure area (Thomas & Heselden, 1972)

Ventilation-controlled regime Momentum-controlled regime

Simplified No solution was ever
proposed

solution

» Large openings

« Small openings
- Homogenous temperature AT/A01 / HO * Non-homogenous temperature (x,y,z,t)

I » Hydrostatically-driven * Very large scatter
* Inertia-driven (geometry/fuel dependent)

GHENT
determined by oxygen transport 70 * Burning rate governed by residence time

Opening factor

UNIVERSITY » Temperature and burning rate
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Courtesy dr. Vinny Gupta

Momentum - Ventilation-contreled

Symbol | Shape Solid
oints
o 121 :re
A 221 means
© 2N | of8-12
940°C o 441 | tests
> 940 80[30 mean values
\32,1 fuel
920

N

()
a

Theory
(T )

| ] i, | 2] | 1
10 20 30 40

A/AgJHy

AT excludes floor and opening. Numbers are fire load densities(kg/mz) at ends of range of temperatures

> O

Reln}N\Abecas&s Empis, C., and Carvel, R., “The Dalmarnock Fire Tests: Experiments and Modellmg : . S .
||||||| The University of Edinburgh, Edinburgh, Scotland, UK, 2006. Thomas, P.H., an.d Heselden, A.J.M., FuII;_/ developed fires !n single compartments"”, CIB
LU Report No 20. Fire Research Note 923, Fire Research Station, Borehamwood, England,
GHENT UK, 1972.
UNIVERSITY
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FIRE DEVELOPMENT IN ENCLOSURES - STAGES

* Growth phase:

* Fire can die due to lack of fuel (fuel-controlled);

A
Temperature (°C)
800
Initial Growing Decay
600 Fire Fire Phase
Phase | Phase
400
200
_——
[}
GHENT 0 —

UNIVERSITY | | Time



FIRE DEVELOPMENT IN ENCLOSURES - STAGES

* Growth phase:

* Fire can die due to lack of oxygen (ventilation-controlled);

Temperature (°C)

800
Initial é Growing E Decay
600 Fire E Fire E Phase
Phase . Phase §
400
200
—
L1111}
GHENT .

Time

UNIVERSITY



FIRE DEVELOPMENT IN ENCLOSURES - STAGES

» Growth phase:

* Fire can die due to lack of fuel (fuel-controlled);
* Fire can die due to lack of oxygen (ventilation-controlled);

* Fire can grow due to a positive thermal feedback loop: more
heat can be provided than what is needed for
evaporation/pyrolysis per unit time.

N

GHENT
UNIVERSITY
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FIRE DEVELOPMENT IN ENCLOSURES - STAGES

* Growth phase:

* Fuel-controlled growth:

A
Temperature (°C)
. Flash-over
800
Initial Growing r Fully
600 Fire Fire D.eveloped
Phase g Phase | Fire
’ | Phase
400
200
_—
L1111}
- —p-
GHENT Q0 —

UNIVERSITY | - | Time



FIRE DEVELOPMENT IN ENCLOSURES - STAGES

» Growth phase: complex process = simplified into t4-fire:
Q = a(t —ty)?>.

* to. Incubation’ period between ignition and the first flames.

« a: determines the growth rate (note: a t*-fire corresponds to
a constant HRR per unit area, growing horizontally at
constant speed in all directions).

N
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Q (Btu'sec)

FIRE DEVELOPMENT IN ENCLOSURES - STAGES

G000

5000

4000

Ll
=
=
=

2000

1000

Time from ignition (sec)

Fire growth Time to 1MW (s) o (kW/s?)
Ultra-fast 75 0.1876
Fast 150 0.0469
Medium 300 0.01172
Cartons 15 ft high, various contents,
fastast if empty or containing Slow 600 0.00293
_ plastic foam
Thin plywood wardrobe Full mail bags, 2 ft high
Wood pallets pallet stack
Fastest burning ‘ > fthigh Cotton/polyester
upholsterad furniture v interspring _'L
Ultra-fast Fast matiress Medium
B Slow
[ I I I I I I |
0 100 200 300 400 500 500 700 77




FIRE DEVELOPMENT IN ENCLOSURES - STAGES

* Example of a measurement: burning sofa.

900,00

800,00

700,00

600,00

500,00

400,00

HRR (kW)

300,00

200,00

100,00

0,00 -

— 0 60 120 180 240 300 360 420 480 540 600 o660 720 780 840 900
A0 Time (s)

GHENT

UNIVERSITY

* Courtesy WarringtonFireGent



FIRE DEVELOPMENT IN ENCLOSURES - STAGES

» Growth phase:

* Flash-over: very rapid transition to involvement of all the fuel in
the combustion process.

NN

GHENT
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FIRE DEVELOPMENT IN ENCLOSURES - STAGES
» Growth phase:

 Flash-over criteria:

* Smoke layer temperature reaches 500 — 600°C (danger for smoke
layer ignition);

« Radiation heat flux at floor level reaches 15 — 20kW/m? (critical heat
flux for ignition for many materials);

* Flames are visible at openings (excess fuel, not burning inside the
enclosure).

N

GHENT
UNIVERSITY 80



FIRE DEVELOPMENT IN ENCLOSURES - STAGES
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FIRE DEVELOPMENT IN ENCLOSURES - STAGES

* Growth phase:

* Ventilation-controlled growth:

A
Temperature (°C)

FIasHm-oiver
800 ; E ; ————— \E
! ' .~ N
5 G N
Initial § Growing .11 Fully . Decay
Fire § Fire 'Y Developed | Phase.
600 | 1 : = N
Phase Phase ., i Fire § \
’ ‘1 i Phase
I
400

200
=

I .
GHENT 0 s i Time
UNIVERSITY FC/VC -
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FIRE DEVELOPMENT IN ENCLOSURES - STAGES

* Fully-developed phase: the duration depends on the fire load
and on the (maximum) HRR.

Q (kW)
A

[T}
GH=ENT Growth phase Steady phase  Decay phase

UNIVERSITY
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FIRE DEVELOPMENT IN ENCLOSURES - STAGES

* Fire load (theoretical): F =S man

. . . ZmiAHci
* Fire load (theoretical) per unit floor area: p_5 |
S

» ‘Effective’ fire load: takes into account incomplete
combustion.

« Sometimes the fire load is expressed as ‘equivalent kg wood
per m?’. It is then implicitly assumed that 1 kg wood

corresponds to 16MJ.

N
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FIRE DEVELOPMENT IN ENCLOSURES - STAGES

* For a given (maximum) HRR, the duration of the fully
developed phase increases linearly with F.

* For a given fire load, the duration of the fully developed

phase decreases (inversely proportional) with (maximum)
HRR.

N

GHENT
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FIRE DEVELOPMENT IN ENCLOSURES - STAGES

» Fully-developed phase: typically ventilation-controlled - the HRR
IS related to the mass flow rate of air through the openings.

* Recall: AH, . =3kJ/g air

« The mass flow rate through an opening is proportional to AvVH (see
lecture on smoke dynamics).

N
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FIRE DEVELOPMENT IN ENCLOSURES - STAGES

 Combination: Q = 12604VH. [Units: HRR in kW; lengths in m]

Caveat: not universally valid.

A (m?) 0.5 1.0 2.0 4.0 6.0

H (m)
0.5 445 890 1780 3560 5350
1.0 630 1260 2520 5040 7560
2.0 890 1780 3560 7120 10700
3.0 1090 2180 4360 8730 13100

—

AR

GHENT

UNIVERSITY
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FIRE DEVELOPMENT IN ENCLOSURES - STAGES

» Decay phase: the fire becomes fuel-controlled again.

Q (kW)
A

[T}
GH=ENT Growth phase Steady phase  Decay phase

UNIVERSITY
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FIRE DEVELOPMENT IN ENCLOSURES - STAGES

* I[mportance of phases:
* Growth phase: life safety.
* Fully-developed phase: structural stabillity.

» Decay phase: often considered less important (but: timber
buildings! High-rise buildings! = lively research area).

N

GHENT
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FIRE RESISTANCE TESTS

Existing frameworks to address fire-safe design of timber...

GHENT
UNIVERSITY

N
o
o

1200 . ;
I I
Fire arowth J.Fully-develuped i | Decay
I I
1000
3)
2. 800
o
E Cnntﬁbuﬁm; to fire J;ﬂsst of I Burnout
growt struclura Self-extinction
© 600 (Ignition and flame capacity ( )
D spread) {Charring rate)
Q.
5
=

N
o
o

Reaction-to-
fire

o

0 10

Fire

resistance

20

Time [min]

30

40

Adapted from Emberiey at al. (2017) Descripfion of small and large-scale cross
laminated timber tests, Fire Safety Journal 91:327-335.

Designing Safe Timber Buildings — Fire Research for Modemn Construction

Courtesy dr. Juan Hidalgo (UQ)

CRICOS code 000258
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FIRE STAGES — FIRE SAFETY STRATEGY

Courtesy dr. Vinny Gupta 1 Eg ress

Egress Untenable  Structure 2. Compartmentation
3. Structural integrity
(beyond burnout)

Relevant timescales

* Note: if the egress takes longer, the
structural integrity is important.

* Note: firefighting can take long.

Fully Developed

Decay

Temperature

lgnition

Time

UNIVERSITY
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EJECTING FLAMES

*In VC fires, ejecting flames are possible (‘excess’ HRR).
* Many complex flow phenomena are possible, including wind.

" T Tueyancy ch;FErEﬁi_rmﬁiPﬂm’ i Tcyand ¥ Chapter 7 Compantrerd-fa ad e
£ i T ;'L dmmtmmhm[];-nﬁemuidm : e A fire b éhaniors umd e exbernal vand 5
Al Tt angartment S - (T) Fac g vrind:
% o Rlane beizht, (@) Sidevrard vrind;
: -Pmﬁmﬁﬁmﬁe} q,:ﬁ-n[{g, I, &, AH) b (3) Back-roof wind
: A Heat g HA - Chapter & Conp antment-facade fire
'—‘—l"‘? Chapter 2 Canpariment fire and ; e hehaiors under sub- ¥ pressre
F’-" e aritical gate of facade Barmne ejecion i . Flaue depth, Z=fenf Q. 4, Z,)
i - : throngh thee opendng :: -
: &1y entratronent ! = i * Chapter 5 Conparbrend- fa ad e fire
T I i £ ey : o — behavdors umder extem d wall
. | PN R Il\_‘ ' | ttlIlItramﬂﬂUIuiﬂI}’ “'ll'mlﬂ"‘ T
I W e s ap — ——— e — — ' - H_ L — .
e e [ R LIC W B . B ; (1) Facmg wrall,
i 0 R ol [ e N A © Side winds; —— | JL
f e ill-i._! - | I e _':__,._- abr oufflw 7ol E - L @Hm'liﬂlhm
i o T R e — AP(zy=0 | |/ — NP Chapter4 hiecadion ruecharism "1' ':
-._ A Aln supply : F o ] '
.. - W] e sk : 4 and flarne recging of Comg arirend-
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THE IMPORTANCE OF
THE FLOW FIELD




THE IMPORTANCE OF THE FLOW FIELD

* Only in a limited sub-set of configurations, namely relatively small
compartments (‘boxes’) with a limited number of openings (17?), the
fire drives everything and the flow field is simplified to Bernoulli's
equation (static pressure difference over the opening(s)).

* In all other circumstances, the flow field is important.

* In other words: the problem is ‘'momentum-driven’, rather than
‘buoyancy-driven’.

» Useful tool to quantify the flow field: CFD.

N
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CFD — BRIEF INTRODUCTION
» CFD = Computational Fluid Dynamics.

» CFD models are the most sophisticated deterministic models.
» Other name in literature: ‘Field Models'.

= \Volume in which calculations are performed, is subdivided into a
large number of sub-volumes (computational mesh or grid).

= Quantities are assumed uniform in the individual sub-volumes.

GHENT
UNIVERSITY
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CFD — BRIEF INTRODUCTION

—y

— e

- Burner

Filrei
P51ee

n'”n‘ll.ruor'

001 m cells

0.02 m cells

"1 0.04 m cclls

GHENT
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y (m)
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L1l I 11
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0.0
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g
- - [4 é 1]
A
% o
i
u
2 o
- 2
2 2cm
1cm
0.5cm
-04 -0.2 0.0 02 0.4
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CFD — BRIEF INTRODUCTION

» CFD modelling is based on the (time-accurate and) three-
dimensional solution of the fundamental conservation
equations:

= Conservation of mass;
= Conservation of total momentum;
= Conservation of energy;

* Transport, generation and destruction of species.

GHENT
UNIVERSITY
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CFD — BRIEF INTRODUCTION

N

GHENT
UNIVERSITY

Gas phase

/Species transport equations

Equation of state

Energy equation

Conservation of mass \

~

Turbulent combustion model

|

Turbulence model

Momentum equations

\_

Radiation model

Soot model /

Heat quxl

T Fuel mass loss rate

Evaporation / pyrolysis

Liquid / solid phase

98



CFD — RESOLUTION

= Sufficient resolution is required for CFD results to be
reliable:

= Computational mesh;

» Radiation (e.g., number of angles).

= A sensitivity study is always necessary!

GHENT
UNIVERSITY
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CFD — RESOLUTION (EX.: MESH)

* Always consider the important length scales for the problem

at hand!

*Free fire / smoke plume:

 (Hydraulic) diameter of the fire source. Rule of thumb: at
least 10 cells across the (hydraulic) diameter.

*D* criterion, based on heat release rate: ,-_

* Range cell size: 4< 1;— <16
X

N

GHENT
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0
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CFD — RESOLUTION (EX.: MESH)

* Flow through openings:

* (Hydraulic) diameter of the fire source. Rule of thumb: at least
10 cells across the (hydraulic) diameter.

¢, =D, /5. =QW-H/W +H))/ S8,

* VVentilation factor. Rule of thumb: at least 10 cells.

0, =0,/5. =(ANH)® /8.

* PhD Guoxiang Zhao (December 2017).

N
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CFD — RESOLUTION (EX.: MESH

N

GHENT
UNIVERSITY

Height above the floor, m

14

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.0

0.1

0.3 0.5 0.7 0.9

Distance from the inner wall, m

0.30

0.25

Height above the floor, m

0.05

0,00

0.20
0.25 |
£
=
2 020t
=
Q
=
@ 0lds T
3
E 010 r
N =
h=
—— Ceall size 1 cm Q) —@— Cell size 1 cm
—a— Cell size 2 em L 0.05 | —&— Cell size ? cm
—de— Cgll gize 4 om ' —b— Cell size 4 cm
200 400 600 800 1000 1200 =1 0 1 2

Temperature at the opening plane,”C U-velocity at the opening plane, m/s

Temperature and horizontal velocity at centerline of the opening plane
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CFD — MODELLING (EX.: TURBULENCE)

‘Static’ Smagorinsky

‘Deardorff’
C=0.1

‘Vreman’
C =0.07

‘Dynamic’
Smagorinsky

GHENT
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CFD — BOUNDARY CONDITIONS

*Boundary conditions (and initial conditions) determine
the specific solution of the generic equations.

* Different types of boundary conditions:

» Inlet BC (e.qg., fire, forced air flow, fuel mass loss rate);
 Qutlet BC (e.g., extraction flow rate);

» Wall BC;

* Open BC.

N
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CFD — BOUNDARY CONDITIONS

Open Adjacent wall Corner

GHENT
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CFD — BOUNDARY CONDITIONS

Impact of mechanical extraction rate (Tilley — Merci, Fire Safety Journal, Vol. 55:
http://www.sciencedirect.com/science/article/pii/S0379711212001567)

Z

s,min =

s,ave

1-D smoke layer

GHENT
UNIVERSITY

Multi-D smoke layer

m(z,) 1.0
(kg's) ., -

0.6

0.4

0.2
0.0 z,(m)
00 06 12 18 24 3.0

e Simulations: average Experiments [1]
» Simulations: minimum - Equation [1]
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CFD — BOUNDARY CONDITIONS

GHENT
UNIVERSITY

Test ID | 1 Neddy | Leday | Isotropic or no
Test 2 | 0. | - - -
Test 3 | 30 | 196 0.004 | 1sotropic
Test 13 | 30 | 1000 | 0.004 | 1sotropic
Test 14 | 20 | 1000 | 0.004 | anisotropic
Test 15 | 30 | 1000 | 0.010 | 1sotropic
Instantaneous
temperature fields

107



CFD — BOUNDARY CONDITIONS

Near walls:

* Turbulent eddies become smaller (blocking effect);

» Gradients become sharp.

Gravity g :{: li]til
a

Courtesy Prof Arnaud Trouvé

GHENT
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CFD — BOUNDARY CONDITIONS

*Near walls:
» Wall-resolved: gradients are captured, but the mesh must be very fine (O(mm))
and grid aspect ratios are an issue > often not affordable (except in research).

» Wall functions: gradients are not captured, so the mesh need not be very fine, but
modeling is required (e.g., log law assumption).

I — j
linear | | log-law 171 y*
sublayer | ,  region (log scale)
y(m) ' ' ! :

I inner layer

— Courtesy Prof Arnaud Trouvé
GHENT
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CFD — EXAMPLE
.J. Sun et al, TUST (2020): 10.1016/j.tust.2020.103543
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CFD — EXAMPLE

No spray

GHENT
UNIVERSITY
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CFD — EXAMPLE

Z {m)

With spray
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CFD — EXAMPLE

70 80 90 100

60

20 30 40 &0

TEMPERATURE:

04

(w) z

105 10 85

13 125 12 115 1
Y (m)

135

14

0.5

-05 0O

-1

VELOCITY: -2 -1.5

W-

A2 222
Vbbbl
Vibbividy
el
Fhbbbbbdd
R R RN
bbb bbby
FhEE L
PAbdidid

dhadedid

Vhb e
VELLEdi Y
bhbbibid
bhbLLbbbd
Lhbbibiby
LELELLY
bLALALLLL
LLVARL LY
PR

LEAAVLLEL
LRARS

T

I

T

T

T

—

-

=

—

I

-

=T o

o

{w) z

10 85

105

125 12 15
Y (m)

13

13.5

14

1.2

1

02 04 06 08

-02 0O

V-VELOCITY:

FiddE e

biddussd
diieees
bhiéde
Lo &
Vil

GEEES A
bbbiiii iy
Vibiiidd
iy
Vbl
bhbdbid i
VELbdA
Phbbibed
bbb bLbbdd
Livbiiiy
LLbLLbbl
bbby

Livebb by
bbbk
11T

A LLd

Lhvbbby
Priblbbbl

10 85

105

125 12 115
Y (m)

13

13.5

14

Close to spray
Mid-plane

GHENT

113

UNIVERSITY



oD 4 . 4 p— N o
o it ~
i HRN
R |
= i 1 o G -
Ol +
R
o «««+ «. e««l @
o = =B S o
o 5.«« ¢ ut«« - (2=}
= 4
= f: 3__%- o
+ P
=) ¢ «— $ 4 3
w i T ¥ ¥ .
@ JS: ¥ =
o o wldkitilil| o (o] o
Ts) =t - et = o
O P SR A |
= cu|YddibIY &
e
= L o~
= W:«IZZI 2
- Sltereeiini -
& = O 44dbdisi— o > o
Tt dbedbef -
N Zlessside sy O
Ui Z| ivivenen| o
= Ztﬁ..ﬂl 2
< 5 bbbl - | -
R -— -— -—
% !
= \ ,
o= Y ~m
RN
o T bhby vyl T :m_.;:,.,, h i
— - hb bbby = bbb =
e bibd | o b ot
oy ; o
| _
,wwvef.L
" AT R . bebebvidr
o~ PRV RV b o bbb o
= Y S bbbidll T
PEb bbby | dhblblvy
FRERLL L bbby
PiLhkbbary bAbhbL
o 2 3 20 I
s 0 Ll o
LRLLLLLLY bEiiii iy
JRELLLLl bbbl
L bebibiL
SRR " Febbd b ay =
W Y )
poi R NN S AR RRY
= RN i o=
bebdb bbbl bbbk
Yibiddii e Pibiiiiy
$eeidt i ﬁm,«..ft
bidddlil bididill
< L < [ - <
< o < o
o o
{w) z {w) z

CFD — EXAMPLE

Plane through nozzles

Close to spray
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CFD — EXAMPLE

Close to spray
Horizontal Plane
Mid-height

GHENT
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CFD — EXAMPLE

B ] | .
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CFD — EXAMPLE

» CFD results are ‘validated’ by experimental data.

= CFD allows for in-depth and detailed discussion of the
flow field, which would be very difficult to measure.

= CFD allows for further interpretation of observations in
experiments.
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CFD — EXAMPLE
= PhD Junyi L.
= Collaboration with IRSN.

* Experiments in NYX set-up.
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Enerqgy balance in air-tight compartments
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FDS model

FDS 6.7.5

Front view Back view

GHENT
UNIVERSITY 120



Energy balance in airtight compartments
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ENERGY EQUATION — IMPORTANCE OF HRR

— Complex interaction:
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Mesh cell size
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Mesh cell size
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Mesh cell size
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Pressure variations with different HRR evolutions
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Pressure variations with different HRR evolutions
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CFD — EXAMPLE

* |nsight in flow fields:
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CFD — EXAMPLE

= Testing of scaling analysis:
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CFEFD — LIMITS OF VALIDITY

» CFD is a very powerful tool.
» CFD can lead to new insights.

* |n principle, all physical (and chemical) phenomena can be
captured.

» The use of CFD requires special care - quality assessment and
deontology!

* |ncreasing computer power in favor of CFD, particularly for
complex applications.
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CFEFD — LIMITS OF VALIDITY

* Yet, things can go wrong:
= Simplification of the geometry.
= Generation of the computational mesh.
= Determination of the boundary conditions.
= Solution of the equations.
= Choice of different sub-models.
= Discretization.

= Neglect of an important phenomenon.

= To summarize: the user can make mistakes!
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THERE'S (MUCH) MORE




THERE'S (MUCH) MORE

 Wildfires

* WUI

* Human behaviour

* Artifical intelligence

* Automated digitization (e.g., BIM)
» Structural fire engineering

* New energy carriers

* Toxicity

* Material sciences

* Fire suppression
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