

INTRODUCTION TO FIRE SAFETY SCIENCE AND ENGINEERING

Prof. Bart Merci

DEPARTMENT OF STRUCTURAL ENGINEERING AND BUILDING MATERIALS

A SHORT MOVIE TO GET STARTED

<u>https://www.youtube.com/watch?v=IQZ_fv_NhAk</u>

REFERENCES

- D. Drysdale, An Introduction to Fire Dynamics, 3rd Ed., Wiley (2011).
- J.G. Quintiere, *Fundamentals of Fire Phenomena*, Wiley (2006).
- The SFPE Handbook of Fire Protection Engineering (2016).
- B. Merci and T. Beji, 'Fluid Mechanics Aspects of Fire and Smoke Dynamics in Enclosures', CRC Press (2016).

<u>CONTENTS</u>

- Ignition
- Fire growth
- Compartment fire dynamics
- The importance of the flow field
- There's (much) more

4

IGNITION

5

FIRE TRIANGLE

– Necessary ingredients: fire triangle.

FIRE TRIANGLE

- Fuel: anything that can burn.
- Oxidizer: oxygen concentration in air is sufficient to sustain burning.
- Heat: ignition required. After that: heat flux from flames (and perhaps smoke and compartment boundaries).

THERMODYNAMICS

- Ignition is required to overcome 'activation energy'.
- Piloted or spontaneous ignition. h^{c}

reaction progress

PILOTED IGNITION

▶ ▶ ● 0:05 / 4:50

Scroll voor details

IGNITION OF GASES

• Imbalance between HRR and heat loss rate.

FLAMMABILITY LIMITS

• Optimum for combustion: around stoichiometry.

IGNITION OF GASES

- Details matter.
- Above AIT: spontaneous ignition.

GHENT UNIVERSITY

IGNITION OF LIQUIDS

- Combustible liquids are classified by their 'flashpoint': the lowest temperature at which a flammable vapour/air mixture exists at surface.

(c)

IGNITION OF SOLIDS

- There is no direct equivalent for the 'flashpoint': pyrolysis is irreversible.
- Still: reasonably similar phenomena (for flaming combustion) \rightarrow 'ignition temperature' (note: this is NOT a material property).
- The mass flow rate must be sufficient to sustain combustion ('critical mass flow rate').
- Critical heat flux: no ignition below that (incoming) heat flux.

IGNITION OF SOLIDS EXPOSED SOURCE OF ENERGY MATERIAL AND SUFFICIENT FLOW OF PILOT SOURCE FLAMMABLE VAPOURS

AND

ESTABLISHED BURNING SUITABLE

CONDITIONS

AND

ESTABLISHED FLAME

AT SURFACE

Fig. 21.1 Schematic of the different processes occurring as a material undergoes degradation prior to ignition induced

- Developed at FM Global.
- Uses CDG (carbon dioxide generation) and OC

(oxygen consumption) calorimetry to determine HRR (see later).

 Measures flammability characteristics under various air flow (ventilation) conditions.

– Time to ignition for a thermally thick material:

$$t_{ig,thick} = \frac{\frac{\pi}{4}\rho kc (T_{ig} - T_{0})}{(\dot{q}_{e}'' - \chi \dot{q}_{cr}'')^{2}}$$

- Critical heat flux (CHF): $\dot{q}_{cr}^{"}$ (kW/m²).
- Heat losses are important \rightarrow flammability measurements are sample holder/apparatus dependent.

- Underlying assumption: radiation is dominant (\rightarrow important to minimize other heat losses).
- Thermal response parameter (TRP):

$$TRP = \left(\frac{\pi}{4}\rho kc\right)^{1/2} \left(T_{ig} - \frac{\pi}{4}\rho kc\right)^{1/2} \left$$

 Note: Materials behave as thermally thick at high heating rates \rightarrow most typical for fires.

$-T_{0}$)

- TRP relates to time to ignition:
 - Higher value \rightarrow less prone to ignition;
 - Lower value \rightarrow more prone to ignition.
- Note: easy ignition means fast flame spread (see later).

– CHF and TRP determined from measurements:

$$t_{ig,thick} = \frac{\frac{\pi}{4}\rho kc (T_{ig} - T_0)^2}{(\dot{q}_e'' - \chi \dot{q}_{cr}'')^2} \rightarrow \frac{1}{\sqrt{t_{ig,th}}}$$

$\frac{\dot{q}_e'' - CHF}{TRP}$ hick

Fig. 36.6 Square root of the inverse of time to ignition versus external heat flux for 100-mm × 100-mm × 25-mm-thick polymethylmethacrylate (PMMA) slab with a blackened surface. Data measured in the Fire Propagation Apparatus [31]

22

FIRE GROWTH

23

- Concept: advancing ignition 'front' (where the temperature reaches) the 'ignition temperature').
- Strong impact of the flow field, compared to the direction of the flame spread.
- Strong difference between thermally thin and thermally thick.
- The heat required for pyrolysis is supplied by the flame.

THERMODYNAMICS

reaction progress

HEAT FEEDBACK

- Combustion is an exothermic process \rightarrow heat is generated.
- Heat of combustion ΔH_c : the amount of energy (in J/kg or kJ/kg or MJ/kg) released by complete combustion of 1 kg of fuel.
- This is related to the (theoretical) 'fire load' inside an enclosure (see later).

FIRE – SOME BASICS

	_	$-\Delta H_{\rm c}$ (kJ/mol)	$-\Delta H_{\rm c}$ (kJ/g)	$-\Delta H_{\rm c,air}$ (kJ/g(air))
Carbon monoxide	СО	283	10.10	4.10
Methane	CH₄	800	50.00	2.91
Ethane	C_2H_6	1423	47.45	2.96
Ethene	C_2H_4	1411	50.35	3.42
Ethyne	C_2H_2	1253	48.20	3.65
Propane	C_3H_8	2044	46.45	2.97
<i>n</i> -Butane	$n - C_4 H_{10}$	2650	45.69	2.97
<i>n</i> -Pentane	$n - C_5 H_{12}$	3259	45.27	2.97
n-Octane	$n - C_8 H_{18}$	5104	44.77	2.97
c-Hexane	$c - C_6 H_{12}$	3680	43.81	2.97
Benzene	C_6H_6	3120	40.00	3.03
Methanol	CH ₃ OH	635	19.83	3.07
Ethanol	C ₂ H ₅ OH	1232	26.78	2.99
Acetone	(CH ₃) ₂ CO	1786	30.79	3.25
D-Glucose	C ₆ H ₁₂ O ₆	2772	15.4	3.08
Cellulose		_	16.09	3.15
Polyethylene			43.28	2.93
Polypropylene			43.31	2.94
Polystyrene		1. 42. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	39.85	3.01
Polyvinylchloride			16.43	2.98
Polymethylmethacrylate			24.89	3.01
Polyacrylonitrile		<u></u>	30.80	3.16
Polyoxymethylene			15.46	3.36
Polyethyleneterephthalate			22.00	3.06
Polycarbonate			29.72	3.04
Nylon 6,6			29.58	2.94

Table 1.13 Heats of combustion^a of selected fuels at 25°C (298 K)

^{*a*} The initial states of the fuels correspond to their natural states at normal temperature and pressure (298°C and 1 atm pressure). All products are taken to be in their gaseous state—thus these are the net heats of combustion.

Oxidizer

$\begin{array}{c} 17.69\\ 12.54\\ 11.21\\ 14.74\\ 15.73\\ 12.80\\ 12.80\\ 12.80\\ 12.80\\ 12.80\\ 12.80\\ 12.80\\ 13.06\\ 13.22\\ 12.88\\ 14.00\\ 13.27\\ 13.59\\ 12.65\\ 12.65\\ 12.66\\ 12.97\\ 12.84\\ 12.98\\ 13.61\\ 14.50\\ 13.21\\ 13.12\\ 12.67\end{array}$	$(kJ/g(O_2))$
$12.54 \\11.21 \\14.74 \\15.73 \\12.80 \\12.80 \\12.80 \\12.80 \\12.80 \\13.06 \\13.22 \\12.88 \\14.00 \\13.27 \\13.59 \\12.65 \\12.65 \\12.65 \\12.66 \\12.97 \\12.84 \\12.98 \\13.61 \\14.50 \\13.21 \\13.12 \\12.67 \\$	17.69
$11.21 \\ 14.74 \\ 15.73 \\ 12.80 \\ 12.80 \\ 12.80 \\ 12.80 \\ 12.80 \\ 13.06 \\ 13.22 \\ 12.88 \\ 14.00 \\ 13.27 \\ 13.59 \\ 12.65 \\ 12.65 \\ 12.66 \\ 12.97 \\ 12.84 \\ 12.98 \\ 13.61 \\ 14.50 \\ 13.21 \\ 13.12 \\ 12.67 \\ 12.6$	12.54
14.74 15.73 12.80 12.80 12.80 12.80 12.80 13.06 13.22 12.88 14.00 13.27 13.59 12.65 12.66 12.97 12.84 12.98 13.61 14.50 13.21 13.12 12.67	11.21
$15.73 \\12.80 \\12.80 \\12.80 \\12.80 \\12.80 \\13.06 \\13.22 \\12.88 \\14.00 \\13.27 \\13.59 \\12.65 \\12.66 \\12.97 \\12.84 \\12.98 \\13.61 \\14.50 \\13.21 \\13.12 \\12.67 \\$	14.74
$12.80 \\12.80 \\12.80 \\12.80 \\12.80 \\13.06 \\13.22 \\12.88 \\14.00 \\13.27 \\13.59 \\12.65 \\12.65 \\12.66 \\12.97 \\12.84 \\12.98 \\13.61 \\14.50 \\13.21 \\13.12 \\12.67 \\$	15.73
$12.80 \\12.80 \\12.80 \\12.80 \\13.06 \\13.22 \\12.88 \\14.00 \\13.27 \\13.59 \\12.65 \\12.65 \\12.66 \\12.97 \\12.84 \\12.98 \\13.61 \\14.50 \\13.21 \\13.12 \\12.67 \\$	12.80
$12.80 \\ 12.80 \\ 12.80 \\ 13.06 \\ 13.22 \\ 12.88 \\ 14.00 \\ 13.27 \\ 13.59 \\ 12.65 \\ 12.66 \\ 12.97 \\ 12.84 \\ 12.98 \\ 13.61 \\ 14.50 \\ 13.21 \\ 13.12 \\ 12.67 \\ 12.67 \\ 12.67 \\ 12.84 \\ 12.98 \\ 13.12 \\ 12.67 \\ 13.12 \\ 12.67 \\ 12.67 \\ 12.80 \\ 13.21 \\ 12.67 \\ 12.67 \\ 12.80 \\ 13.21 \\ 12.67 \\ 12.67 \\ 12.80 \\ 13.21 \\ 12.67 \\ 12.67 \\ 12.80 \\ 13.21 \\ 12.67 \\ 12.67 \\ 12.80 \\ 13.21 \\ 12.67 \\ 12.67 \\ 12.80 \\ 13.21 \\ 12.67 \\ 12.67 \\ 12.80 \\ 13.21 \\ 12.67 \\ 12.67 \\ 12.80 \\ 13.21 \\ 13.12 \\ 12.67 \\ 12.67 \\ 12.80 \\ 13.21 \\ 13.12 \\ 12.67 \\ 13.21 \\ 13.12 \\ 12.67 \\ 14.50 \\ 13.21 \\ 13.12 \\ 12.67 \\ 12.67 \\ 12.67 \\ 12.67 \\ 12.80 \\ 13.21 \\ 13.12 \\ 12.67 \\ 12.67 \\ 12.80 \\ 13.21 \\ 13.12 \\ 12.67 \\ 12.67 \\ 12.80 \\ 13.21 \\ 13.12 \\ 12.67 \\ 12.80 \\ 13.21 \\ 13.12 \\ 12.67 \\ 12.80 \\ 13.21 \\ 13.12 \\ 12.67 \\ 14.50 \\ 13.21 \\ 13.12 \\ 12.67 \\ 14.50 \\ 13.21 \\ 13.12 \\ 12.67 \\ 14.50 \\ 13.21 \\ 13.12 \\ 12.67 \\ 14.50 \\ 13.21 \\ 13.12 \\ 12.67 \\ 14.50 \\ 13.21 \\ 13.12 \\ 12.67 \\ 14.50 \\ 13.21 \\ 13.12 \\ 12.67 \\ 14.50 \\ 13.21 \\ 12.67 \\ 14.50 \\ 13.21 \\ 12.67 \\ 14.50 \\ 13.21 \\ 13.12 \\ 12.67 \\ 14.50 \\ 13.21 \\ 13.12 \\ 12.67 \\ 14.50 \\ 13.21 \\ 13.12 \\ 13.1$	12.80
$12.80 \\12.80 \\13.06 \\13.22 \\12.88 \\14.00 \\13.27 \\13.59 \\12.65 \\12.66 \\12.97 \\12.84 \\12.98 \\13.61 \\14.50 \\13.21 \\13.12 \\12.67 \\$	12.80
$12.80 \\ 13.06 \\ 13.22 \\ 12.88 \\ 14.00 \\ 13.27 \\ 13.59 \\ 12.65 \\ 12.66 \\ 12.97 \\ 12.84 \\ 12.98 \\ 13.61 \\ 14.50 \\ 13.21 \\ 13.12 \\ 12.67 \\ 12.67 \\ 12.67 \\ 12.67 \\ 13.01 \\ 13.01 \\ 12.67 \\ 13.01 \\ 13.02 \\ 12.67 \\ 13.01 \\ 13.02 \\ 12.67 \\ 13.01 \\ 13.02 \\ 12.67 \\ 13.01 \\ 13.02 \\ 12.67 \\ 13.01 \\ 13.02 \\ 12.67 \\ 13.01 \\ 13.02 \\ 12.67 \\ 13.01 \\ 13.02 \\ 12.67 \\ 13.01 \\ 13.02 \\ 12.67 \\ 13.01 \\ 13.02 \\ 12.67 \\ 13.01 \\ 13.02 \\ 12.67 \\ 13.01 \\ 13.02 \\ 13.01 \\ 13.02 \\ 13.01 \\ 13.02 \\ 13.01 \\ 13.02 \\ 13.01 \\ 13.02 \\ 13.01 \\ 13.02 \\ 13.01 \\ 13.02 \\ 13.01 \\ 13.02 \\ 13.01 \\ 13.02 \\ 13.01 \\ 13.02 \\ 13.01 \\ 13.02 \\ 13.01 \\ 13.02 \\ 13.02 \\ 13.01 \\ 13.02 \\ 13.02 \\ 13.01 \\ 13.02 \\ 13.0$	12.80
$13.06 \\ 13.22 \\ 12.88 \\ 14.00 \\ 13.27 \\ 13.59 \\ 12.65 \\ 12.65 \\ 12.97 \\ 12.84 \\ 12.98 \\ 13.61 \\ 14.50 \\ 13.21 \\ 13.12 \\ 12.67 \\ 12.67 \\ 13.26 \\ 12.67 \\ 13.21 \\ 13.12 \\ 12.67 \\ 13.26 \\ 13.21 \\ 13.26 \\ 13.26 \\ 13.21 \\ 13.22 \\ 13.26 \\ 13.21 \\ 13.22 \\ 13.26 \\ 13.21 \\ 13.22 \\ 13.26 \\ 13.21 \\ 13.22 \\ 13.26 \\ 13.21 \\ 13.22 \\ 13.26 \\ 13.21 \\ 13.22 \\ 13.26 \\ 13.21 \\ 13.26 \\ 13.26 \\ 13.21 \\ 13.26 \\ 13.26 \\ 13.26 \\ 13.21 \\ 13.26 \\ 13.26 \\ 13.26 \\ 13.26 \\ 13.26 \\ 13.21 \\ 13.26 \\ 13.26 \\ 13.26 \\ 13.26 \\ 13.21 \\ 13.26 \\ 13.26 \\ 13.26 \\ 13.21 \\ 13.26 \\ 13.2$	12.80
13.22 12.88 14.00 13.27 13.59 12.65 12.66 12.97 12.84 12.98 13.61 14.50 13.21 13.12 12.67	13.06
12.88 14.00 13.27 13.59 12.65 12.66 12.97 12.84 12.98 13.61 14.50 13.21 13.12 12.67	13.22
14.00 13.27 13.59 12.65 12.66 12.97 12.84 12.98 13.61 14.50 13.21 13.12 12.67	12.88
13.27 13.59 12.65 12.66 12.97 12.84 12.98 13.61 14.50 13.21 13.12 12.67	14.00
13.59 12.65 12.66 12.97 12.84 12.98 13.61 14.50 13.21 13.12 12.67	13.27
12.65 12.66 12.97 12.84 12.98 13.61 14.50 13.21 13.12 12.67	13.59
12.66 12.97 12.84 12.98 13.61 14.50 13.21 13.12 12.67	12.65
12.97 12.84 12.98 13.61 14.50 13.21 13.12 12.67	12.66
12.84 12.98 13.61 14.50 13.21 13.12 12.67	12.97
12.98 13.61 14.50 13.21 13.12 12.67	12.84
13.61 14.50 13.21 13.12 12.67	12.98
14.50 13.21 13.12 12.67	13.61
13.21 13.12 12.67	14.50
13.12 12.67	13.21
12.67	13.12
	12.67

FIRE – SOME BASICS

- Note: heat of combustion per kg oxygen or per kg air consumed is independent of the fuel for many (hydrocarbon) **fuels:** $\Delta H_{c.ox} = 13kJ / g O_2$ $\Delta H_{c.air} = 3kJ / g air$
- Use:
 - Ventilation-controlled fires.
 - Oxygen-depletion calorimetry to determine HRR: $\dot{Q}_{c} = (0.21 - \eta_{O_{\gamma}}) \dot{V} \cdot 10^{3} \cdot \rho_{O_{\gamma}} \cdot \Delta H_{c.ox}$

Oxidizer

Opposed flow / vertically downward – thermally thick

GHENT

UNIVERSITY

• Opposed flow / vertically downward – thermally thick:

$$\delta_T = C_{\sqrt{\alpha_F t}} = C_{\sqrt{\frac{k_F}{\rho_F c_F}}} t$$

$$\dot{Q}' \propto \frac{1}{2} \rho_F \delta_T v_f c_F (T_{ign} - T_{amb})$$

$$\dot{q}_g \approx \frac{k_g (T_f - T_{s,av})}{d_f} \qquad \dot{Q}'_g = \dot{q}_g \delta_s$$

$$\dot{q}_s \approx \frac{k_F (T_{s,av} - T_{amb})}{\delta_s} = \frac{1}{2} \frac{k_F (T_{ign} - T_{amb})}{\delta_s} \qquad \dot{Q}'_s = \dot{q}_s \delta_T$$

$$\frac{1}{2}\rho_F\delta_T v_f c_F (T_{ign} - T_{amb}) = \frac{k_g (T_f - T_{s,av})}{d_f} \delta_s + \frac{1}{2} \frac{k_F (T_{ign} - T_{amb})}{\delta_s} \delta_T$$

$$v_f \propto \delta_s \frac{1}{\rho_F k_F c_F} \left(\frac{\dot{q}}{T_{ign} - T_{amb}} \right)^2$$

• Concurrent flow / vertically upward: thermal runaway \rightarrow accelerating flame spread.

GHENT

UNIVERSITY

 Thermally thin fuels: time to ignition scales linearly with the thickness of the material \rightarrow faster flame spread for thinner materials. Note: flames on both sides \rightarrow even faster flame spread.

REACTION-TO-FIRE TESTS

Classification of products in 'end use' application.

Fire behaviour	Smoke production	Falling droplets
A1 No contribution to fire		
A2 Almost no contribution to fire	s1 limited smoke production; s2 average smoke production; s3 large smoke production	d0 no droplets; d1 burning droplets < 10s; d2 burning droplets > 10s
B Very limited contribution to fire	s1, s2, s3	d0, d1, d2
C Limited contribution to fire	s1, s2, s3	d0, d1, d2
D Import contribution to fire	s1, s2, s3	d0, d1, d2
E Very import contribution to fire		d2
F No performance determined		

SINGLE BURNING ITEM (SBI)

- Corner set-up:
 - Long panel: 1 m x 1.5 m;
 - Short panel: 0.5 m x 1.5 m;
- Triangular burner 30 kW.
- Exposure during 20 minutes.

34

SINGLE BURNING ITEM (SBI)

ROOM CORNER (RC)

- Room corner test EN 9750:
 - Test sample mounted on the inside of the room, on the ceiling and on all the walls except for the wall with the door opening.
 - Propane gas burner, located in one of the corners, produces a heat release rate of 100 kW during 10 minutes, and then 300 kW the following 10 minutes.

ROOM CORNER (RC)

Euroclass	Flashover in the Room Corner Reference test	Smoke optical density Exhaust gases
A1	No flashover	Gas burner
A2	No flashover	
В	No flashover	
С	Flashover between 10 - 20 minutes	54 m
D	Flashover between 2 to 10 minutes	
E	Flashover before 2 minutes	
F	NPD No data available	3.6 m

ROOM CORNER (RC)

- Room corner test EN 9750:
 - Combustion gases collected through a hood \rightarrow measurement of heat release rate and smoke production rate.
 - Flame spread along walls and ceiling observed visually.
 - If flames emerge from the door opening: flashover \rightarrow test terminated. HRR at flashover is generally about 1 MW.

ROOM CORNER (RC)

HEAT FEEDBACK: FREE FIRE PLUME

fuel interior

HEAT FEEDBACK: FREE FIRE PLUME

- Notations:
 - Mass flow rate per unit area (kg/(m²s)): \dot{m} "
 - Heat flux from the flames per unit area (W/m²): \dot{Q}_{F}
 - Heat losses per unit area (W/m²): $\dot{Q}_{L}^{"}$
 - Mass flow rate (kg/s): $\dot{m} (= \dot{m}^{"}A_{F})$
 - Heat of combustion (J/kg): ΔH_c .

- Heat feedback loop:
 - Heat generated per unit time (W/kW/MW): heat release rate (HRR): $\dot{Q} = \chi \dot{m}^{"} A_F \Delta H_c$:
 - χ : completeness of combustion;
 - $\dot{m}_{"}$: mass flow rate per unit area (kg/(m²s));
 - A_F : area involved in the fire (m²)
 - ΔH_c : theoretical heat of combustion (J/kg, kJ/kg, MJ/kg).

- Heat feedback loop (ctd.):
 - Heat required per unit time is related to the fuel mass loss rate:

$$\dot{m}'' = rac{\dot{q}_{in,net}}{L_v}$$

- L_{ν} : latent heat of vaporization / heat of pyrolysis (J/kg, kJ/kg, MJ/kg)
- $\dot{q}_{in.net}$: net incident heat flux onto the fuel surface (in W/m², kW/m^2 , MW/m^2).

- Heat feedback loop (ctd.):
 - Combination: heat release rate (HRR):

$$\dot{Q} = \chi \dot{m}^{"} A_F \Delta H_C = \chi \frac{\dot{q}_{in,net}}{L_v} A_F \Delta H_C = \chi \dot{q}_{in,net}$$

$$\frac{\Delta H_c}{L_v}$$
: 'combustibility ratio'.

 $_{et}A_F \frac{\Delta H_c}{L_v}$

• Example:

 For fire dynamics, often the heat release rate (in W or kW or MW) is more important than the total energy contents (fire load). [Note: for the stability of structures, the fire load is important, as it affects the duration of the fire.]

- Basic equation: $\dot{Q} = \chi \frac{\dot{q}_{in,net}}{L_m} A_F \Delta H_c = \dot{q}_{in,r}$
- Two main effects: heat transfer and ventilation are key!
 - Increased thermal feedback (see next slide) \rightarrow increased net incident heat flux $(\dot{q}_{in.net})$.
 - Possibly reduced ventilation (air supply) \rightarrow reduction in completeness of combustion (χ or $\Delta H_{c,eff}$).

$$net A_F \frac{\Delta H_{c,eff}}{L_v}$$

Fire spread in car parks

- Important factors that determine the fire development in enclosures:
 - The geometry and material of the enclosure (strong impact on thermal heat feedback).
 - The ventilation conditions.
 - The fuel (type, amount and surface area).

- Heat transfer by conduction:
 - Important in solids (there is also conduction in fluids, but in case of motion it is masked by convection).
 - Heat flows from high temperature to low temperature.
 - Equation: 'Fourier's law': $\vec{q} = -k\nabla T = -\lambda\nabla T$
 - Thermal conductivity (k, λ) : W/(m.K).
 - In 1 direction: $\dot{Q}_{cond} = -kA \frac{dT}{dx} = -\lambda A \frac{dT}{dx}$, with A the area through which heat is transferred.

• Heat transfer by conduction:

Table 2.1 Thermai properties of some common materials					
Material	k (W/m.K)	с _р (J/kg.K)	ρ (kg/m ³)	α (m²/s)	$k\rho c_p$ (W ² .s/m ⁴ K ²)
Copper	387	380	8940	1.14×10^{-4}	1.3×10^{9}
Steel (mild)	45.8	460	7850	1.26×10^{-5}	1.6×10^{8}
Brick (common)	0.69	840	1600	5.2×10^{-7}	9.3×10^{5}
Concrete	0.8-1.4	880	1900-2300	5.7×10^{-7}	2×10^{6}
Glass (plate)	0.76	840	2700	3.3×10^{-7}	1.7×10^{6}
Gypsum plaster	0.48	840	1440	4.1×10^{-7}	5.8×10^{5}
PMMA ^b	0.19	1420	1190	1.1×10^{-7}	3.2×10^{5}
Oak ^c	0.17	2380	800	8.9×10^{-8}	3.2×10^{5}
Yellow pine ^c	0.14	2850	640	8.3×10^{-8}	2.5×10^{5}
Asbestos	0.15	1050	577	2.5×10^{-7}	9.1×10^{4}
Fibre insulating board	0.041	2090	229	$8.6 imes 10^{-8}$	2.0×10^{4}
Polyurethane foam ^d	0.034	1400	20	1.2×10^{-6}	9.5×10^{2}
Air	0.026	1040	1.1	2.2×10^{-5}	—

^a From Pitts and Sissom (1977) and others. Most values for 0 or 20°C. Figures have been rounded off.

^b Polymethylmethacrylate. Values of k, c_p and ρ for other plastics are given in Table 1.2.

^c Properties measured perpendicular to the grain.

Table 21

^d Typical values only.

Thermal properties of some common materials^a

have been rounded off. Table 1.2.

- Heat transfer by convection:
 - Heat transfer to or from a solid by motion of a fluid in contact with that solid.
 - Empirical relationship (Newton): $\dot{q}_{conv} = h\Delta T$
 - Convection coefficient (h), in W/(m²K): this is NOT a material property: it also depends on the system, the geometry, the fluid and flow parameters.
 - Range of values for h : 5-25W/(m²K) (free convection) and 10-500W/(m²K) (forced convection in air).
 - $\dot{Q}_{conv} = hA\Delta T$, with A the area through which heat is transferred.

- Heat transfer by radiation:
 - Stefan-Boltzmann: the total energy emitted per unit time and per unit area by a body is proportional to its temperature (in K) to the fourth power: $E = \varepsilon \sigma T^4$
 - σ : Stefan-Boltzmann constant (5.67 10⁻⁸W/(m²K⁴)).
 - ε : emissivity (non-dimensional). $\varepsilon = 1$: black body.

Table 9.5Critical temperature for different exposure conditions

Type and period of exposure	Effect	Ter (°C
Radiation	Severe skin pain	185
Conduction (metal) (1 second)	Skin burns	60
Convection (30 minutes)	Hyperthermia	100
Convection (< 5 minutes)	Skin/lungs burns by hot gases	120
Convection (< 1 minute)	Skin/lungs burns by hot gases	190

+ black-body: 2.5 kW m⁻²

mperature

+

- Heat transfer by radiation:
 - Radiative heat exchange between bodies: depends on the temperature, emissivities (absorptivities) and the geometry (i.e., how large are the surfaces and how do they 'see' each other).
 - View factor / configuration factor φ: determines the fraction of incident radiation, stemming from the emitted radiation (emission is in all directions in principle) → for black bodies: Q₁₋₂ = σφ(T₁⁴ T₂⁴)

Source: MSc thesis Toni Christiansen (DTU)

Figur 12 – Brandspredning fra bil til bil

59

- Heat accumulation in solids:
 - Mass density (ρ, kg/m³): more mass per unit volume means more heat is needed for a change in temperature → more heat accumulation is possible.
 - Specific heat, aka heat capacity (*c*, J/(kg.K)): indicates how much heat is required to increase the temperature of 1 kg material by 1 K / 1 °C → if *c* is higher, more heat accumulation is possible.
 - The product ρkc is called 'thermal inertia'.

- Heat accumulation in solids:
 - If ρkc is low, the temperature of the material rises quickly \rightarrow the temperature of the solid (ceiling, wall, floor) can follow the gas temperature (which rises due to the fire) well \rightarrow small temperature differences \rightarrow less heat is taken from the gas phase \rightarrow more heat is available for the pyrolysis / evaporation \rightarrow a quicker fire development is possible.
 - Vice versa is ρkc is high.
 - Note: passive housing (although airtightness is more important).

	ρ (kg/m ³)	k (W/(m.K))	c (J/(kg.K))	α (m²/s)	$\sqrt{\rho kc}$
Steel	8000	15	500	3.75 10-6	7750
Brick	2000	1	850	5.9 10 ⁻⁷	1300
Wood	700	0.15	1250	1.7 10-7	360
Insulation	70	0.025	1000	3.6 10-7	42
Human skin					1200

Table 2.1 Thermal properties of some common materials ^a					
Material	k (W/m.K)	с _р (J/kg.K)	ρ (kg/m ³)	α (m²/s)	$k\rho c_p$ (W ² .s/m ⁴ K ²)
Copper	387	380	8940	1.14×10^{-4}	1.3×10^{9}
Steel (mild)	45.8	460	7850	1.26×10^{-5}	1.6×10^{8}
Brick (common)	0.69	840	1600	5.2×10^{-7}	9.3×10^{5}
Concrete	0.8-1.4	880	1900-2300	5.7×10^{-7}	2×10^{6}
Glass (plate)	0.76	840	2700	3.3×10^{-7}	1.7×10^{6}
Gypsum plaster	0.48	840	1440	4.1×10^{-7}	5.8×10^{5}
PMMA ^b	0.19	1420	1190	1.1×10^{-7}	3.2×10^{5}
Oak ^c	0.17	2380	800	8.9×10^{-8}	3.2×10^{5}
Yellow pine ^c	0.14	2850	640	8.3×10^{-8}	2.5×10^{5}
Asbestos	0.15	1050	577	2.5×10^{-7}	9.1×10^{4}
Fibre insulating board	0.041	2090	229	$8.6 imes 10^{-8}$	$2.0 imes 10^4$
Polyurethane foam ^d	0.034	1400	20	1.2×10^{-6}	9.5×10^{2}
Air	0.026	1040	1.1	2.2×10^{-5}	

^a From Pitts and Sissom (1977) and others. Most values for 0 or 20°C. Figures have been rounded off.

^b Polymethylmethacrylate. Values of k, c_p and ρ for other plastics are given in Table 1.2.

^c Properties measured perpendicular to the grain.

^d Typical values only.

· 1 a

- Flammability:
 - Simplified chemical reaction: $F(uel) + O(xidizer) \rightarrow P(roducts)$
 - 'Stoichiometric conditions': there is just enough oxidizer to allow complete reaction of all the fuel \rightarrow maximum temperature.
 - Fuel lean: over-ventilated, 'fuel-controlled'.
 - Fuel-rich: under-ventilated, 'ventilation-controlled'.
 - Too little fuel or too little oxygen: not flammable anymore.

- Fully-developed phase: is typically ventilation-controlled.
 - Importance of the 'opening factor': $O.F. = \frac{A\sqrt{H}}{AT}$.
 - A: total surface area of the ventilation openings;
 - *H*: height of the ventilation openings (assumed unique);
 - A_T : total area for heat exchange in the enclosure.

- Denominator: linked to heat losses.
- Numerator: Bernoulli's equation \rightarrow inflow of air \rightarrow HRR (VC).

• Numerator: Bernoulli's equation.

$$\begin{split} \dot{m}_{out} &= C_{d,out} \int_{z_N}^{z_{top}} \rho \sqrt{2 \left(\frac{\rho_{amb}}{\rho} - 1\right) g(z - z_N) W(z) dz} \\ \dot{m}_{out} &= \frac{2}{3} C_{d,out} \rho W \sqrt{2 \left(\frac{T}{T_{amb}} - 1\right) g} \left(z_{top} - z_N\right)^{3/2} \\ \frac{z_N - z_{bottom}}{z_{top} - z_N} &= \left(\frac{T_{amb}}{T}\right)^{1/3} \\ \dot{m}_{out} &= \frac{2}{3} C_{d,out} \rho \sqrt{2 \left(\frac{T}{T_{amb}} - 1\right) g} W H^{3/2} \left(\frac{1}{1 + \left(\frac{T_{amb}}{T}\right)^{1/3}}\right)^{3/2} \\ W H^{3/2} &= A \sqrt{H} \end{split}$$

• The opening factor determines the expected temperature. [Does it?]

FIRE DEVELOPMENT IN ENCLOSURES - STAGES

- Note: 'regime II' fires strongly depend on the flows ('momentum driven').
- Many different types of fire are possible, particularly in large compartments (growing; travelling; evolution to flash-over).
- This is a very lively research area (e.g., work done at UQ):

- Travelling fire:
$$\frac{v_F}{v_{BO}} \approx 1$$
;

- Growing fire: $\frac{v_F}{v_{BO}} > 1$;
- Fully developed fire: $\frac{v_F}{v_{BO}} \to \infty$.

- Immense body of experimental and theoretical research from the 1950s to 1970s
- Classification of fully-developed fires into two distinct regimes based on the ratio of the opening area and enclosure area (Thomas & Heselden, 1972)

Ventilation-controlled regime

Momentum-controlled regime

he 1950s to 1970s based on the ratio of the

No solution was ever proposed

Large openings

- Non-homogenous temperature (x,y,z,t)
- Very large scatter
- Inertia-driven (geometry/fuel dependent)
- Burning rate governed by residence time

Courtesy dr. Vinny Gupta

GHENT

UNIVERSITY

Rein, G., Abecassis Empis, C., and Carvel, R., "The Dalmarnock Fire Tests: Experiments and Modelling", The University of Edinburgh, Edinburgh, Scotland, UK, 2006.

Thomas, P.H., and Heselden, A.J.M., "Fully developed fires in single compartments", CIB Report No 20. Fire Research Note 923, Fire Research Station, Borehamwood, England, UK, 1972.

FIRE DEVELOPMENT IN ENCLOSURES - STAGES

- Growth phase:
 - Fire can die due to lack of fuel (fuel-controlled);

- Growth phase:
 - Fire can die due to lack of fuel (fuel-controlled);
 - Fire can die due to lack of oxygen (ventilation-controlled);

- Growth phase:
 - Fire can die due to lack of fuel (fuel-controlled);
 - Fire can die due to lack of oxygen (ventilation-controlled);
 - Fire can grow due to a positive thermal feedback loop: more heat can be provided than what is needed for evaporation/pyrolysis per unit time.

- Growth phase:
 - Fuel-controlled growth:

Decay Phase

- Growth phase: complex process \rightarrow simplified into t^2 -fire: $\dot{Q} = \alpha (t - t_0)^2.$
- t_0 : 'incubation' period between ignition and the first flames.
- α : determines the growth rate (note: a t²-fire corresponds to a constant HRR per unit area, growing horizontally at constant speed in all directions).

Time from ignition (sec)

Time to 1MW (s)	α (kW/s²)
75	0.1876
150	0.0469
300	0.01172
600	0.00293

• Example of a measurement: burning sofa.

Courtesy WarringtonFireGent

- Growth phase:
 - Flash-over: very rapid transition to involvement of all the fuel in the combustion process.

- Growth phase:
 - Flash-over criteria:
 - Smoke layer temperature reaches 500 600°C (danger for smoke) layer ignition);
 - Radiation heat flux at floor level reaches 15 20kW/m² (critical heat flux for ignition for many materials);
 - Flames are visible at openings (excess fuel, not burning inside the enclosure).

81

• Growth phase:

GHENT

• Ventilation-controlled growth:

 Fully-developed phase: the duration depends on the fire load and on the (maximum) HRR.

- Fire load (theoretical): $F = \sum_{i} m_i \Delta H_{c,i}$
- Fire load (theoretical) per unit floor area: $F = \frac{\sum_{i} m_i \Delta H_{c,i}}{\tilde{c}}$
- 'Effective' fire load: takes into account incomplete combustion.
- Sometimes the fire load is expressed as 'equivalent kg wood per m²'. It is then implicitly assumed that 1 kg wood corresponds to 16MJ.

- For a given (maximum) HRR, the duration of the fully developed phase increases linearly with F.
- For a given fire load, the duration of the fully developed phase decreases (inversely proportional) with (maximum) HRR.

- Fully-developed phase: typically ventilation-controlled \rightarrow the HRR is related to the mass flow rate of air through the openings.
- Recall: $\Delta H_{c,air} = 3kJ/g air$
- The mass flow rate through an opening is proportional to $A\sqrt{H}$ (see lecture on smoke dynamics).

• Combination: $\dot{Q} = 1260A\sqrt{H}$. [Units: HRR in kW; lengths in m] Caveat: not universally valid.

$egin{aligned} & A_w(\mathrm{m}^2) \ & H(\mathrm{m}) \end{aligned}$	0.5	1.0	2.0	4.0	6.0
0.5	445	890	1780	3560	5350
1.0	630	1260	2520	5040	7560
2.0	890	1780	3560	7120	10700
3.0	1090	2180	4360	8730	13100

• Decay phase: the fire becomes fuel-controlled again.

- Importance of phases:
 - Growth phase: life safety.
 - Fully-developed phase: structural stability.
 - Decay phase: often considered less important (but: timber) buildings! High-rise buildings! \rightarrow lively research area).

FIRE RESISTANCE TESTS

Existing frameworks to address fire-safe design of timber...

Adapted from Emberley at al. (2017) Description of small and large-scale cross laminated timber tests, Fire Safety Journal, 91:327-335.

GHENT UNIVERSITY

Designing Safe Timber Buildings - Fire Research for Modern Construction

Courtesy dr. Juan Hidalgo (UQ)

CRICOS code 00025B

FIRE STAGES – FIRE SAFETY STRATEGY

UNIVERSITY

Temperature

91

1. Egress

- 2. Compartmentation
- 3. Structural integrity (beyond burnout)

Relevant timescales

Note: if the egress takes longer, the structural integrity is important.
Note: firefighting can take long.

EJECTING FLAMES

- In VC fires, ejecting flames are possible ('excess' HRR).
- Many complex flow phenomena are possible, including wind.

Courtesy: Prof Longhua Hu, USTC

THE IMPORTANCE OF THE FLOW FIELD

THE IMPORTANCE OF THE FLOW FIELD

- Only in a limited sub-set of configurations, namely relatively small compartments ('boxes') with a limited number of openings (1?), the fire drives everything and the flow field is simplified to Bernoulli's equation (static pressure difference over the opening(s)).
- In all other circumstances, the flow field is important.
- In other words: the problem is 'momentum-driven', rather than 'buoyancy-driven'.
- Useful tool to quantify the flow field: CFD.

CFD – BRIEF INTRODUCTION

- CFD = Computational Fluid Dynamics.
- CFD models are the most sophisticated deterministic models.
- Other name in literature: 'Field Models'.
- Volume in which calculations are performed, is subdivided into a large number of sub-volumes (computational mesh or grid).
- Quantities are assumed uniform in the individual sub-volumes.

<u>CFD – BRIEF INTRODUCTION</u>

CFD – BRIEF INTRODUCTION

- CFD modelling is based on the (time-accurate and) threedimensional solution of the fundamental conservation equations:
 - Conservation of mass;
 - Conservation of total momentum;
 - Conservation of energy;
 - Transport, generation and destruction of species.

<u>CFD – BRIEF INTRODUCTION</u>

Gas phase

CFD – RESOLUTION

- Sufficient resolution is required for CFD results to be reliable:
 - Computational mesh;
 - Radiation (e.g., number of angles).
- A sensitivity study is always necessary!

CFD – RESOLUTION (EX.: MESH)

- Always consider the important length scales for the problem at hand!
- Free fire / smoke plume:
 - (Hydraulic) diameter of the fire source. Rule of thumb: at least 10 cells across the (hydraulic) diameter.
 - D* criterion, based on heat release rate: $D^* = \left[\frac{\dot{Q}}{\rho_{\infty}C_{\infty}T_{\infty}\sqrt{g}}\right]^{2/2}$

• Range cell size:
$$4 < \frac{D^*}{\delta x} < 16$$

CFD – RESOLUTION (EX.: MESH)

- Flow through openings:
 - (Hydraulic) diameter of the fire source. Rule of thumb: at least 10 cells across the (hydraulic) diameter.

$$\ell_2^* = D_h / \delta_x = (2W \cdot H / (W + H)) / \delta_x$$

- Ventilation factor. Rule of thumb: at least 10 cells. $\ell_1^* = \ell_1 / \delta_r = (A\sqrt{H})^{2/5} / \delta_r$
- PhD Guoxiang Zhao (December 2017).

<u>CFD – RESOLUTION (EX.: MESH)</u>

Temperature and horizontal velocity at centerline of the opening plane

102

<u>CFD – MODELLING (EX.: TURBULENCE)</u>

C_s = 0.1 *C_s* = *0*.

'Dynamic' Smagorinsky

'Static' Smagorinsky

'Deardorff' C =0.1

'Vreman' C =0.07

- Boundary conditions (and initial conditions) determine the specific solution of the generic equations.
- Different types of boundary conditions:
 - Inlet BC (e.g., fire, forced air flow, fuel mass loss rate);
 - Outlet BC (e.g., extraction flow rate);
 - Wall BC;
 - Open BC.

Corner

Impact of mechanical extraction rate (Tilley – Merci, Fire Safety Journal, Vol. 55: http://www.sciencedirect.com/science/article/pii/S0379711212001567)

1-D smoke layer

Multi-D smoke layer

<u>CFD – BOUNDARY CONDITIONS</u>

Test ID	Ι	N_{eddy}	L_{eddy}	Isotropic or no
Test 2	0.	-	-	-
Test 3	30	196	0.004	isotropic
Test 13	30	1000	0.004	isotropic
Test 14	20	1000	0.004	anisotropic
Test 15	30	1000	0.010	isotropic

Instantaneous temperature fields

•Near walls:

GHENT

- Turbulent eddies become smaller (blocking effect);
- Gradients become sharp.

FD – BOUNDARY CONDITIONS

•Near walls:

- Wall-resolved: gradients are captured, but the mesh must be very fine (O(mm)) and grid aspect ratios are an issue \rightarrow often not affordable (except in research).
- Wall functions: gradients are not captured, so the mesh need not be very fine, but modeling is required (e.g., log law assumption).

•J. Sun et al, TUST (2020): 10.1016/j.tust.2020.103543

No spray

With spray

Close to spray Mid-plane

Close to spray Plane through nozzles

Close to spray Horizontal Plane Mid-height

Close to spray Horizontal Plane Close to ceiling

CFD – EXAMPLE

CFD results are 'validated' by experimental data.

- CFD allows for in-depth and detailed discussion of the flow field, which would be very difficult to measure.
- CFD allows for further interpretation of observations in experiments.

- PhD Junyi Li.
- Collaboration with IRSN.
- Experiments in NYX set-up.

Courtesy dr. Hugues Prétrel IRSN

Energy balance in air-tight compartments

FDS model

FDS 6.7.5

Front view

Back view

Energy balance in airtight compartments

$$\frac{V}{\gamma - 1}\frac{d}{dt}p = \dot{Q}_f - \dot{Q}_w + \dot{Q}_v$$

RHS>0 => $\frac{dp}{dt}$ >0 => pressure increase **?**

ENERGY EQUATION – IMPORTANCE OF HRR

– Complex interaction:

Heat release rates as function of time

Pressure variations (left) and pressure change variations (right) as function of time

Mechanical ventilation flow rates as function of time: (a) admission; (b) extraction

Temperature rise evolutions as function of time at different heights: (a) 0.15 m; (b) 0.35 m; (c) 0.55 m; (d) 0.75 m; (e) 0.95 m UNIVERSITY

126

Pressure variations with different HRR evolutions

Pressure variations as function of time with different fuel mass flow rate growth rate coefficient: (a) α =0.00003 g/s³; (b) α =0.01 g/s³ 10 points moving average for experimental curves and 20 points moving average for numerical curves

ERD: Euclidean Relative Difference, SC: Secant Cosine, EPC: Euclidean Projection Coefficient

Pressure variations with different HRR evolutions

Pressure variations as function of time with different maximum fuel mass flow rate: (a) \dot{m}_{f} 10 points moving average for experimental curves and 20 points moving average for numerical curves

ERD: Euclidean Relative Difference, SC: Secant Cosine, EPC: Euclidean Projection Coefficient

$$m_{f,max}$$
=0.05 g/s; (b) $\dot{m}_{f,max}$ =0.2 g/s

Insight in flow fields:

Instantaneous velocity vectors in the vertical plane through the admission duct at different times. Instantaneous velocity vectors in the vertical plane through the burner at different times.

Testing of scaling analysis:

CFD – LIMITS OF VALIDITY

- CFD is a very powerful tool.
- CFD can lead to new insights.
- In principle, all physical (and chemical) phenomena can be captured.
- The use of CFD requires special care \rightarrow quality assessment and deontology!
- Increasing computer power in favor of CFD, particularly for complex applications.

FD – LIMITS OF VALIDITY

- Yet, things can go wrong:
 - Simplification of the geometry.
 - Generation of the computational mesh.
 - Determination of the boundary conditions.
 - Solution of the equations.
 - Choice of different sub-models.
 - Discretization.
 - Neglect of an important phenomenon.
- To summarize: the user can make mistakes!

132

THERE'S (MUCH) MORE

- Wildfires
- WUI
- Human behaviour
- Artifical intelligence
- Automated digitization (e.g., BIM)
- Structural fire engineering
- New energy carriers
- Toxicity
- Material sciences
- Fire suppression

