Computer-Based Compartment Fire Modeling

3ème École des Sciences des Incendies et Applications (ESIA)

— June 1 2022

Arnaud Trouvé

Department of Fire Protection Engineering University of Maryland, College Park MD (USA)

- Outline
 - **▶** Brief Review of Compartment Fire Dynamics
 - > Fire Modeling Landscape
 - > Computational Infrastructure
 - Physical Modeling
 - > Examples

• Main features: fire is an uncontrolled combustion process characterized by a thermal feedback loop

 Main features: fire is a buoyancy-driven, relatively-slow, nonpremixed combustion process

> Example: pool fire configuration

• Fuel source velocity is small (a few cm/s)

- Buoyancy effects accelerate the flow up to several m/s; flow regime corresponds to moderate turbulence intensities
- Flame corresponds to diffusion combustion and to a thin reaction sheet where fuel and air meet in stoichiometric proportions
- Long residence times and large length scales promote soot formation and radiation losses

$$\chi_{rad} = (\dot{Q}_{rad}/\dot{Q}_{fire}) \sim 0.3$$

• **Main features**: in compartment fires, combustion can evolve to under-ventilated (*i.e.*, fuel-rich) conditions

Flames extending out of the compartment of fire origin

- **Main features**: in compartment fires, combustion can evolve to under-ventilated (*i.e.*, fuel-rich) conditions
 - > Flame location: (1) near the fuel source; (2) near the vents

(1) Over-ventilated combustion,

(2) Under-ventilated combustion

- **Main features**: in compartment fires, combustion can evolve to underventilated (*i.e.*, fuel-rich) conditions
 - Oxygen starvation reduces the flame intensity and promotes flame extinction

 Main features: in compartment fires, radiation plays a dominant role in the thermal feedback to fuel sources

- Main features: in compartment fires, radiation plays a dominant role in the thermal feedback to fuel sources
 - Possible transition to *flashover* (rapid series of radiation-driven ignition events involving all flammable objects/materials present in the fire room)

- Main features: fire is an uncontrolled combustion process characterized by a thermal feedback loop
 - Buoyancy-driven turbulent flow
 - Non-premixed combustion
 - Including possible oxygen-limited conditions leading to flame extinction/re-ignition phenomena
 - Including soot formation
 - > Thermal radiation
 - Including possible transition to flashover
 - Pyrolysis

- Three different components in a computational model aimed at fire applications
 - Computational Fluid Dynamics (CFD) flow/combustion solver
 - Heat release by combustion and heat transfer by convection
 - Radiation solver
 - Heat transfer by radiation (electromagnetic energy)
 - Solid phase pyrolysis solver
 - Heat transfer by conduction and possible thermal degradation of materials

Compartment Fire Modeling

- Outline
 - ➤ Brief Review of Compartment Fire Dynamics
 - > Fire Modeling Landscape
 - > Computational Infrastructure
 - Physical Modeling
 - > Examples

Fire Modeling Landscape

- CFD modeling
 - > A spatially-resolved description of compartment fires

Fire Modeling Landscape

CFD modeling

- > History
 - An approximately 25-years-old activity
 - Widespread use by different fire safety stakeholders (including researchers and practicing engineers)

> Landscape

- No commercial software
- Software with limited distribution: JASMINE (Building Research Establishment, UK), KAMELEON (Norwegian University of Science and Technology/SINTEF, Norway), SMARTFIRE (University of Greenwich, UK), SOFIE (University of Cranfield, UK)
- Open-source software: FDS (NIST, USA), FireFOAM (FM Global, USA), ISIS (IRSN, France)

Fire Modeling Landscape

- CFD modeling
 - > Applications
 - Performance-based design (compartmentation performance, evacuation performance, smoke management, fire suppression systems, structural resistance, etc)
 - Forensic applications
 - Risk analysis
 - Fire-fighter training
 - Sensor-driven real-time emergency management
 - Research (scientific studies of fire dynamics)

Compartment Fire Modeling

- Outline
 - ➤ Brief Review of Compartment Fire Dynamics
 - Fire Modeling Landscape
 - > Computational Infrastructure
 - Physical Modeling
 - > Examples

- CFD-based fire modeling (field modeling)
 - ➤ A branch in a wider class of simulation tools known as Computational Fluid Dynamics (CFD)
 - > CFD infrastructure requires:
 - Mathematical models to describe relevant physics
 - ✓ First principles (conservation of mass, momentum, energy)
 - Numerical algorithms to solve mathematical models
 - ✓ Partial Differential Equations (PDE) solvers
 - Mesh generators
 - Computer power to enable numerical algorithms
 - Massively parallel computers
 - ✓ Graphics Processing Unit (GPU) computers

Mathematical modeling (Direct Numerical Simulation – DNS)

$$\begin{vmatrix} \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_{j}} (\rho u_{j}) = 0 \\ \frac{\partial}{\partial t} (\rho Y_{k}) + \frac{\partial}{\partial x_{j}} (\rho Y_{k} u_{j}) = \frac{\partial}{\partial x_{j}} (\rho D_{k} \frac{\partial Y_{k}}{\partial x_{j}}) + \dot{\omega}_{k}, \quad 1 \leq k \leq N_{S} \\ \frac{\partial}{\partial t} (\rho u_{i}) + \frac{\partial}{\partial x_{j}} (\rho u_{i} u_{j}) = -\frac{\partial p}{\partial x_{i}} + \frac{\partial \tau_{ij}}{\partial x_{j}} + \rho g_{i}, \quad 1 \leq i \leq 3 \\ \frac{\partial}{\partial t} (\rho h) + \frac{\partial}{\partial x_{j}} (\rho h u_{j}) = \frac{\partial p}{\partial t} + u_{j} \frac{\partial p}{\partial x_{j}} + \tau_{ij} \frac{\partial u_{i}}{\partial x_{j}} - \frac{\partial q_{j}}{\partial x_{j}} \\ p = \rho RT(\sum_{k=1}^{N_{s}} \frac{Y_{k}}{M_{k}})$$

- Resolution requirements
 - \triangleright How many pixels (*i.e.* computational cells)?

- Mathematical modeling (DNS)
 - > Characteristic length scales
 - Turbulence viewed as a multi-scale problem

- Mathematical modeling (DNS)
 - Computational grid requirement
 - Large eddies (macro-scales)
 - \checkmark Turbulent rms velocity (m/s): u
 - ✓ Integral length scale (m): L_t
 - ✓ Turbulent Reynolds number:

$$\operatorname{Re}_{t} = \frac{\rho u' L_{t}}{\mu} = \frac{u' L_{t}}{\nu}$$

- Small eddies (micro-scales, also called Kolmogorov scales)
 - ✓ Kolmogorov velocity (m/s):

$$v_K = u' \times (Re_t)^{-1/4}$$

✓ Kolmogorov length scale (m):

$$|\eta_K = L_t \times (\mathrm{Re}_t)^{-3/4}|$$

- Mathematical modeling (DNS)
 - > Computational grid requirement
 - Example: pool fire, $\dot{Q} = 1 \text{ MW}$; D = 1 m

$$\overline{u}_{CL,\text{max}} \approx 1.9 \times (\dot{Q}/1000)^{1/5} = 7.6 \text{ m/s}$$

$$u' \approx 0.3 \times \overline{u}_{CL,\text{max}} = 2.3 \text{ m/s}$$

$$L_t \approx 0.5 \times D = 0.5 \text{ m}$$

$$\Rightarrow \text{Re}_t = \frac{u'L_t}{v} \approx \frac{2.3 \times 0.5}{10^{-4}} \approx 11500$$

$$\Rightarrow \eta_K = \frac{L_t}{(\text{Re}_t)^{3/4}} = \frac{0.5}{(11500)^{3/4}} = 0.4 \text{ mm}$$

$$\Delta x_{DNS} \approx 0.4 \text{ mm}$$

Grid requirement based on flow

- Mathematical modeling (DNS)
 - > Characteristic length scales
 - Combustion viewed as a stiff problem

Lecoustre et al. (2014) Combust. Flame

Strained laminar diffusion flame theory

$$\delta_{flame} \sim \sqrt{D_{th,st}/\chi_{st}}$$

$$\delta_{flame} \approx 1 \text{ mm}$$

$$\Delta x_{DNS} \approx 0.1 \text{ mm}$$

Grid requirement based on flame

- Mathematical modeling (DNS)
 - > Characteristic length scales
 - Thermal radiation viewed as a stiff problem

Experimental observations

$$\delta_{soot} \approx 1 \text{ mm}$$

$$\Delta x_{DNS} \approx 0.1 \text{ mm}$$

Grid requirement based on radiation

Valencia et al. Proc. Combust. Inst. 2016

- Mathematical modeling (Direct Numerical Simulation
 - -DNS
 - Computational grid requirement
 - Grid-resolved scales: L_t , η_K , δ_{flame} , δ_{soot}

$$\Delta x_{DNS} \approx \eta_K$$

$$\Delta x_{DNS} \approx (\delta_{flame}/10) \qquad \Longrightarrow \Delta x_{DNS} = O(0.1 \text{ mm})$$

$$\Delta x_{DNS} \approx (\delta_{soot}/10)$$

 Mathematical modeling (Large Eddy Simulation – LES)

$$\begin{vmatrix} \frac{\partial \overline{\rho}}{\partial t} + \frac{\partial}{\partial x_{j}} (\overline{\rho} \tilde{u}_{j}) = 0 \\ \frac{\partial}{\partial t} (\overline{\rho} \tilde{Y}_{k}) + \frac{\partial}{\partial x_{j}} (\overline{\rho} \tilde{Y}_{k} \tilde{u}_{j}) = -\frac{\partial \lambda_{kj}}{\partial x_{j}} + \frac{\partial}{\partial x_{j}} (\overline{\rho} D_{k} \frac{\partial Y_{k}}{\partial x_{j}}) + \overline{\omega}_{k}^{m}, \quad 1 \leq k \leq N_{S} \\ \frac{\partial}{\partial t} (\overline{\rho} \tilde{u}_{i}) + \frac{\partial}{\partial x_{j}} (\overline{\rho} \tilde{u}_{i} \tilde{u}_{j}) = -\frac{\partial T_{ij}}{\partial x_{j}} - \frac{\partial \overline{\rho}}{\partial x_{i}} + \frac{\partial \overline{\tau}_{ij}}{\partial x_{j}} + \overline{\rho} g_{i}, \quad 1 \leq i \leq 3 \\ \frac{\partial}{\partial t} (\overline{\rho} \tilde{h}) + \frac{\partial}{\partial x_{j}} (\overline{\rho} \tilde{h} \tilde{u}_{j}) = -\frac{\partial Q_{j}}{\partial x_{j}} + \frac{\partial \overline{\rho}}{\partial t} + \overline{u_{j}} \frac{\partial p}{\partial x_{j}} + \overline{\tau}_{ij} \frac{\partial u_{i}}{\partial x_{j}} - \frac{\partial \overline{q}_{j}^{m}}{\partial x_{j}} \\ \overline{p} = \overline{\rho} R \tilde{T} \sum_{k=1}^{N_{s}} \frac{\tilde{Y}_{k}}{M_{k}} + R \sum_{k=1}^{N_{s}} \frac{(\overline{\rho} T Y_{k} - \overline{\rho} \tilde{T} \tilde{Y}_{k})}{M_{k}}$$

- Mathematical modeling (Large Eddy Simulation LES)
 - Mathematical formulation applied to LES-filtered (*i.e.* computational-grid-cell-averaged) quantities; requires models to describe unresolved (subgrid-scale) physics
 - Models to describe turbulent fluxes: λ_{kj} , T_{ij} , Q_j
 - Models to describe turbulent combustion: $\overline{\dot{\omega}}_{k}^{\prime\prime\prime}$
 - Models to describe thermal radiation transport: $\bar{q}_{rad}^{""} = -\partial/\partial x_j(\bar{q}_j^{"})$

- Mathematical modeling (LES)
 - > Computational grid requirement
 - Turbulence viewed as a multi-scale problem

- Mathematical modeling (LES)
 - > Computational grid requirement (fine-grained LES)
 - Example: pool fire, $\dot{Q} = 1 \text{ MW}$; D = 1 m

$$L_t \approx 0.5 \times D = 0.5 \text{ m}$$

$$\Rightarrow \left| \Delta x_{LES} \approx \frac{L_t}{10} = 0.05 \text{ m} \approx 100 \times \Delta x_{DNS} \right|$$

- Mathematical modeling
 - ➤ Direct Numerical Simulation (DNS)
 - Grid-resolved scales: L_t , η_K , δ_{flame} , δ_{soot}

$$\Delta x_{DNS} \approx \eta_K$$

$$\Delta x_{DNS} \approx (\delta_{flame}/10) \qquad \Longrightarrow \Delta x_{DNS} = O(0.1 \text{ mm})$$

$$\Delta x_{DNS} \approx (\delta_{soot}/10)$$

- ➤ Large Eddy Simulation (LES)
 - Grid-resolved scales: L_t

$$\Delta x_{LES} \approx (L_t/10)$$

• Unresolved scales: η_K , δ_{flame} , δ_{soot}

- Mathematical modeling (LES)
 - > Computational grid requirement (coarse-grained LES)
 - Example: fire in a large building system

Space:
$$(L_{system})^3$$

$$\frac{\text{CPU cost}}{N_{\Delta t}(N_{\Delta x}N_{\Delta y}N_{\Delta z})} = O(100 \,\mu s)$$

$$N_{\Delta x} \sim N_{\Delta y} \sim N_{\Delta z} = (\frac{L_{system}}{\Delta x})$$

$$N_{\Delta t} = (\frac{T}{\Delta t}) = (\frac{T}{CFL \times (\Delta x/U)})$$

$$\text{CPU cost} \times (\Delta x)^4 = O(100 \,\mu s) \times (\frac{T \times U \times (L_{system})^3}{CFL})$$

- Mathematical modeling (LES)
 - > Computational grid requirement (coarse-grained LES)
 - Example: fire in a large building system

$$L_{system} = 50 \text{ m}$$

$$U = 10 \text{ m/s}$$

$$T = 10 \text{ minutes}$$

$$CPU \cos t = 24 \times 32 \text{ PEs} = 768 \text{ hours}$$

$$CFL = 0.5$$

$$\Rightarrow \Delta x \sim 0.5 \text{ m}$$

$$(N_{\Delta x} N_{\Delta y} N_{\Delta z}) \sim 1 \text{ Million}$$

- Computational modeling
 - Going from a mathematical model to a numerical algorithm Model problem

$$\frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x} = D \frac{\partial^2 f}{\partial x^2}$$

 \triangleright **Discretization**: describe continuous function f(x,t) as a set of discrete numbers corresponding to values taken by f at prescribed space and time locations

$$f_i^n = f(x_i, t_n)$$

- Computational modeling
 - Going from a mathematical model to a numerical algorithm Model problem

$$\boxed{\frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x} = D \frac{\partial^2 f}{\partial x^2}}$$

Formulation of discretized equations: describe original partial differential equations (PDEs) as a set of algebraic operations (additions, subtractions, multiplications, divisions) that can be performed by a computer

$$\frac{f_i^{n+1} - f_i^n}{\Delta t} + u \frac{f_{i+1}^n - f_{i-1}^n}{2\Delta x} = D \frac{f_{i+1}^n + f_{i-1}^n - 2f_i^n}{(\Delta x)^2}$$
unsteady convection diffusion

Computational modeling

> PDE solvers

Model problem

$$\left| \frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x} = D \frac{\partial^2 f}{\partial x^2} \right|$$

Computational domain

$$L_x = 20 \,\mathrm{m}$$

Initial conditions

$$f(x, t = 0) = \exp(-\frac{(x - x_0)^2}{\sigma_0^2})$$

 $x_0 = 5 \text{ m} ; \sigma_0 = 0.5 \text{ m}$

Parameters

$$u = 1 \text{ m/s} ; \delta_0 = 2\sigma_0 = 1 \text{ m}$$

 $Re = \frac{u \times \delta_0}{D} = 1000 ; D = 10^{-3} \text{ m}^2/\text{s}$

Computational modeling

PDE solversModel problem

EECD scheme (Euler/explicit, central-differencing)

$$\Delta x = (\delta_0 / 10) = 0.1 \text{ m}$$

$$\Delta t = 0.2 \times (\Delta x / u) = 0.02 \text{ s}$$

unstable solution! (unphysical)

Computational modeling

EEUD scheme (Euler/explicit, upwind-differencing)

$$\Delta x = (\delta_0 / 10) = 0.1 \text{ m}$$

$$\Delta t = 0.2 \times (\Delta x / u) = 0.02 \text{ s}$$

stable solution
positive solution
(physical but) inaccurate

- Computational modeling
 - > PDE solvers
 - > Numerical errors

- Computational modeling
 - PDE solversModel problem

TVD scheme (Total Variation Diminishing)

$$\Delta x = (\delta_0 / 10) = 0.1 \text{ m}$$

 $\Delta t = 0.2 \times (\Delta x / u) = 0.02 \text{ s}$

stable solution
physical and accurate
(and positive)

- Computational modeling
 - > Mesh generators

Unstructured grid

- Computer power
 - ➤ Cyber-infrastructure (CI): Information Technologies for computation, storage, communication, and data processing services, driven by:
 - Fast development of computer and network technologies
 - Dissemination of these technologies on a global scale
 - Rapid decrease in cost (< \$1/MFlops)

- Computer power
 - Current status of CI technologies
 - High-performance computing (HPC) facilities (Government Research Laboratories, Universities)
 - ✓ Massively parallel processing systems with computational rates $\sim 1 \text{ Exa } (10^{18}) \text{ Flops}$
 - Small-to-mid-scale computing facilities (Businesses)
 - ✓ Medium-scale parallel computing systems (clusters)
 - Grid infra-structure (coupling of distributed and heterogeneous computational resources and data stores via high-speed networks)
 - ✓ Cloud computing

- Computer power
 - > Changes brought by CI technologies
 - Development of computational research as a new scientific approach
 - Development of computational research as a new engineering approach
 - Development of open-source data and software digital libraries

Compartment Fire Modeling

- Outline
 - ➤ Brief Review of Compartment Fire Dynamics
 - Fire Modeling Landscape
 - Computational Infrastructure
 - **→** Physical Modeling
 - Turbulence
 - Combustion
 - Radiation
 - Pyrolysis
 - > Examples

Modeling of convective transport

$$\frac{\partial}{\partial t}(\bar{\rho}\tilde{u}_{i}) + \frac{\partial}{\partial x_{j}}(\bar{\rho}\tilde{u}_{i}\tilde{u}_{j}) = -\frac{\partial T_{ij}}{\partial x_{j}} - \frac{\partial \bar{p}}{\partial x_{i}} + \frac{\partial T_{ij}}{\partial x_{j}} + \bar{\rho}g_{i}$$

$$\frac{\partial}{\partial t}(\bar{\rho}\tilde{u}_{i}) + \frac{\partial}{\partial x_{j}}(\bar{\rho}\tilde{u}_{i}\tilde{u}_{j}) = -\frac{\partial}{\partial x_{i}} + \frac{\partial}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} + \bar{\rho}g_{i}$$

$$\frac{\partial}{\partial t}(\bar{\rho}\tilde{u}_{i}) + \frac{\partial}{\partial x_{j}}(\bar{\rho}\tilde{u}_{i}\tilde{u}_{j}) = -\frac{\partial}{\partial x_{i}} + \frac{\partial}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} + \bar{\rho}g_{i}$$

$$\frac{\partial}{\partial t}(\bar{\rho}\tilde{u}_{i}) + \frac{\partial}{\partial x_{j}}(\bar{\rho}\tilde{u}_{i}\tilde{u}_{j}) = -\frac{\partial}{\partial x_{i}} + \frac{\partial}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} + \bar{\rho}g_{i}$$

$$\frac{\partial}{\partial t}(\bar{\rho}\tilde{u}_{i}) + \frac{\partial}{\partial x_{j}}(\bar{\rho}\tilde{u}_{i}\tilde{u}_{j}) = -\frac{\partial}{\partial x_{i}}(\bar{\rho}\tilde{u}_{i}\tilde{u}_{j}) + \frac{\partial}{\partial x_{i}}(\bar{\rho}\tilde{u}_{i}\tilde{u}_{j})$$

$$\frac{\partial}{\partial t}(\bar{\rho}\tilde{u}_{i}) + \frac{\partial}{\partial x_{i}}(\bar{\rho}\tilde{u}_{i}\tilde{u}_{j}) = -\frac{\partial}{\partial x_{i}}(\bar{\rho}\tilde{u}_{i}\tilde{u}_{j})$$

$$\frac{\partial}{\partial x_{i}}(\bar{\rho}\tilde{u}_{i}\tilde{u}_{j}) + \frac{\partial}{\partial x_{i}}(\bar{\rho}\tilde{u}_{i}\tilde{u}_{j})$$

$$\frac{\partial}{\partial x_{i}}(\bar{\rho}\tilde{u}_{i}\tilde{u}_{j})$$

$$\frac{\partial}{\partial x_{i}}(\bar{\rho}\tilde{u}_{i}\tilde{u}_{j})$$

$$\frac{\partial}{\partial x_{i}}(\bar{\rho}\tilde{u}_{i}\tilde{u}_{j})$$

$$\frac{\partial}{\partial x_{i}}(\bar{\rho}\tilde{u}_{i}\tilde{u}_{j})$$

$$\frac{\partial}{\partial x_{i}}(\bar{\rho}\tilde{u}_{i}\tilde{u}_{j}\tilde{u}_{j})$$

$$\frac{\partial}{\partial x_{i}}(\bar{\rho}\tilde{u}_{i}\tilde{u}_{j}\tilde{u}_{j})$$

$$\frac{\partial}{\partial x_{i}}(\bar{\rho}\tilde{u}_{i}\tilde{u}_{j}\tilde{u}_{j})$$

$$\frac{\partial}{\partial x_{i}}(\bar{\rho}\tilde{u}_{i}\tilde{u}_{j}\tilde$$

- Modeling of turbulence
 - \triangleright Classical LES treatment: gradient transport model for turbulent fluxes featuring a turbulent viscosity μ_t

$$T_{ij} = -\mu_{t} \left(\frac{\partial \tilde{u}_{i}}{\partial x_{i}} + \frac{\partial \tilde{u}_{j}}{\partial x_{i}} - \frac{2}{3} \delta_{ij} \frac{\partial \tilde{u}_{k}}{\partial x_{k}} \right) + \frac{2}{3} \delta_{ij} \overline{\rho} k_{SGS}$$

 \triangleright Closure expression for μ_t

$$\mu_t = \overline{\rho}(C_{\mu_t}\Delta)\sqrt{k_{SGS}}$$
 where $\Delta = (\Delta x_1 \Delta x_2 \Delta x_3)^{1/3}$

- \triangleright Closure expression for k_{SGS}
 - Models: Smagorinsky; Deardorff (FDS); k-equation (FireFOAM);
 WALE; etc

- Limitations of current subgrid-scale turbulence models
 - ➤ No suitable treatment of boundary layer effects:
 - Sharp gradients of temperature at the wall surface need to be evaluated in order to calculate the wall convective heat flux

$$\dot{q}_{w,c}'' = -k \frac{\partial T}{\partial y} \bigg|_{y=0}$$

Wall-resolved LES

$$\Delta y = O(1 \text{ mm})$$

- Limitations of current subgrid-scale turbulence models
 - > No suitable treatment of boundary layer effects:
 - Sharp gradients of temperature at the wall surface need to be evaluated in order to calculate the wall convective heat flux

$$\left. \dot{q}_{w,c}'' = -k \frac{\partial T}{\partial y} \right|_{v=0}$$

Wall-modelled LES

$$\Delta y = O(1 \text{ cm})$$

- Limitations of current subgrid-scale turbulence models
 - Traditional approach to wall modeling
 - ✓ First off-wall grid node located inside the log-law region
 - ✓ Implicit equation for u_{τ}

$$\tilde{u}_1^+ = \frac{1}{\kappa} \operatorname{Log}(y_1^+) + C_1$$

 \checkmark Equation for \dot{q}_w

$$\frac{(\rho c_p u_\tau)(T_w - \tilde{T}_1)}{\dot{q}_w^{"}} = \frac{1}{\kappa_\theta} \text{Log}(y_1^+) + C_\theta$$

- Limitations of current subgrid-scale turbulence models
 - No treatment of buoyancy effects: Rayleigh-Taylor instabilities; reverse cascade of turbulent kinetic energy
 - Example of a pool fire configuration

Example of a ceiling jet configuration

Compartment Fire Modeling

- Outline
 - ➤ Brief Review of Compartment Fire Dynamics
 - Fire Modeling Landscape
 - Computational Infrastructure
 - > Physical Modeling
 - Turbulence
 - Combustion
 - Radiation
 - Pyrolysis
 - > Examples

Modeling of chemical reaction rates

$$\frac{\partial}{\partial t}(\bar{\rho}\tilde{Y}_{k}) + \frac{\partial}{\partial x_{j}}(\bar{\rho}\tilde{Y}_{k}\tilde{u}_{j}) = -\frac{\partial\lambda_{kj}}{\partial x_{j}} + \frac{\partial}{\partial x_{j}}(\bar{\rho}D_{k}\frac{\partial Y_{k}}{\partial x_{j}}) + \underbrace{\bar{\omega}'''_{k}}_{\text{mass reaction rate (grid-scale and subgrid-scale)}}^{\text{mass reaction rate}}$$

requires modeling

- Modeling of chemical reaction rates
 - Fuel composition is often unknown in fire problems: use a representative surrogate fuel (wood, plastic, foam, fabric, *etc*)
 - Global combustion equation (no chemistry) $C_n H_m O_p + \{ n + (m/4) (p/2) \} O_2 \rightarrow nCO_2 + (m/2)H_2O$
 - Closure expression for reaction rate: Eddy Dissipation Model (EDM) model

$$\overline{\dot{\omega}_{F}'''} = \overline{\rho} \times \frac{\min(\tilde{Y}_{F}; \tilde{Y}_{O_{2}} / r_{s})}{\tau_{t}} \quad \text{where} \quad \tau_{t} = C_{\tau_{t}} \times (\frac{\overline{\rho} \Delta^{2}}{\mu_{t}})$$

- Limitations of current combustion models
 - > No treatment of extinction effects
 - Extinction by oxygen depletion in under-ventilated compartment fires or by evaporative cooling in fires weakened by water-based suppression systems
 - No treatment of ignition effects
 - Possible re-ignition of fuel-air mixture following extinction
 - Ignition of flammable vapor-air mixtures in explosion scenarios (e.g., backdraft)
 - ➤ No treatment of toxic products emission (soot, CO, HCN, etc)

- Limitations of current combustion models
 - Current treatment of extinction effects (FDS)
 - Flammability map based on a critical value of the flame temperature for extinction, $FEF = function(\tilde{x}_{O_2}, \tilde{T})$

Compartment Fire Modeling

- Outline
 - ➤ Brief Review of Compartment Fire Dynamics
 - Fire Modeling Landscape
 - Computational Infrastructure
 - > Physical Modeling
 - Turbulence
 - Combustion
 - Radiation
 - Pyrolysis
 - > Examples

- Modeling of radiative cooling/heating
 - Theoretical framework
 - Decomposition of angular space (hemisphere) into discrete viewing directions and elementary viewing areas (solid angles)

Viewing direction:

$$\vec{s} = \begin{cases} \sin \theta \cos \varphi \\ \sin \theta \sin \varphi \\ \cos \theta \end{cases}$$

Elementary solid angle:

$$d\Omega = \sin\theta \, d\theta \, d\varphi$$

- Modeling of radiative cooling/heating
 - > Theoretical framework
 - Description of radiation energy as electromagnetic wave energy with spectral-dependent properties
 - Black body radiation

$$I_{\lambda,b}(\lambda,T) = \frac{2hc_0^2 T^5}{(\lambda T)^5 \left[\exp\left(\frac{hc_0}{k(\lambda T)}\right) - 1\right]}$$

$$I_b = \int_0^\infty I_{\lambda,b} d\lambda = \frac{\sigma T^4}{\pi}$$

- Modeling of radiative cooling/heating
 - Theoretical framework
 - Description of radiation energy as electromagnetic wave energy with spectral-dependent properties

- Modeling of radiative cooling/heating
 - Radiative transfer equation (RTE) (assumed grey medium)

$$I(P, \vec{s}): \quad \nabla I.\vec{s} = \kappa(\frac{\sigma T^4}{\pi}) - \kappa I$$
emission
absorption

$$\kappa(T,(x_{H_2O},x_{CO_2},f_v))$$

$$\dot{q}_{rad}^{\prime\prime\prime} = -\int_{4\pi} (\nabla I.\vec{s}) d\Omega = -4\kappa(\sigma T^4) + \kappa \times \int_{4\pi} Id\Omega$$

Solution methods for the RTE: Discrete Ordinate Method (DOM);
 Discrete Transfer Method (DTM); Monte Carlo Method (MCM)

- Modeling of radiative cooling/heating
 - Radiative transfer equation (LES framework)

$$\nabla \bar{I}.\vec{s} = \kappa(\frac{\sigma T^4}{\pi}) - \kappa \bar{I}$$
Emission Absorption
(grid-scale & subgrid-scale)

requires modeling

$$\bar{\dot{q}}_{rad}^{\prime\prime\prime} = -4\overline{\kappa(\sigma T^4)} + \kappa \times \int_{4\pi} Id\Omega$$

- Modeling of radiative cooling/heating
 - Closure model for the RTE (LES framework): the prescribed global radiant fraction (PGRF) approach

$$\nabla \bar{I}.\vec{s} = \chi_{rad}^g \times (\frac{\dot{q}_{comb}^{\prime\prime\prime}}{4\pi}), \text{ if } \dot{q}_{comb}^{\prime\prime\prime} > 0$$

$$\nabla \bar{I}.\vec{s} = 0$$
, if $\dot{q}_{comb}^{\prime\prime\prime} = 0$

• Global radiant fraction χ_{rad}^g is treated as an input quantity to the fire model and is user-prescribed

- Limitations of current radiation models
 - The PGRF approach remains approximate (does not work in scenarios in which the flame structure changes and the radiant fraction is not constant)

- ➤ Radiation properties depend on soot volume fraction: the radiation model requires a soot model
- ➤ No treatment of spectral effects (assumed grey medium)
- Accuracy of DOM and DTM controlled by discretization of angular space and typically decreases in the far-field (ray effect)
 - Solution methods for the RTE are computationally expensive (typically multiplies the cost of CFD by a factor of at least 2)

- Control of numerical accuracy (DOM, DTM)
 - The solution of the RTE is a function of spatial location and angular direction; the accuracy of the RTE solution is controlled by the number of angles used in the decomposition of angular space

Compartment Fire Modeling

- Outline
 - ➤ Brief Review of Compartment Fire Dynamics
 - Fire Modeling Landscape
 - Computational Infrastructure
 - > Physical Modeling
 - Turbulence
 - Combustion
 - Radiation
 - Pyrolysis
 - > Examples

- Modeling of the fuel mass loss rate (MLR)
 - > Two different approaches
 - *Empirical* approach: prescribed MLR; predicted ignition time
 - Advanced approach: MLR predicted from gas-to-solid thermal feedback and finite rate decomposition kinetics

- Modeling of the fuel mass loss rate (MLR)
 - Advanced approach
 - Finite-rate chemical kinetic model: explicit treatment of thermal decomposition chemistry
 - Thermal degradation across flammable solid described by a local 1D problem in the direction normal to the exposed solid surface

$$-k_s \frac{\partial T_s}{\partial x}(0,t) = -\varepsilon G + \varepsilon \sigma (T_s(0,t)^4 - T_\infty^4) + h(T_s(0,t) - T_\infty)$$
heat flux to solid interior (conduction)

thermal feedback

(challenge: need to be evaluated accurately)

- Modeling of the fuel mass loss rate (MLR)
 - Advanced approach
 - Finite-rate chemical kinetic model: explicit treatment of thermal decomposition chemistry
 - Sequence of 4 chemical reactions (example)

```
(Drying) (1 \ kg \ wet \ solid)
\rightarrow (\eta_{H_2O,Rd} \ kg \ water \ vapor) + (\eta_{ds,Rd} \ kg \ dry \ solid)
(Thermal pyrolysis) (1 \ kg \ dry \ solid)
\rightarrow (\eta_{f,Rp} \ kg \ fuel) + (\eta_{c,Rp} \ kg \ char)
(Oxidative pyrolysis) (1 \ kg \ dry \ solid) + (\eta_{O_2,Rop} \ kg \ O_2)
\rightarrow (\eta_{f,Rop} \ kg \ fuel) + (\eta_{c,Rop} \ kg \ char)
(Char oxidation) (1 \ kg \ char) + (\eta_{O_2,Rco} \ kg \ O_2)
\rightarrow (\eta_{p,Rco} \ kg \ products) + (\eta_{a,Rco} \ kg \ ash)
```


- Modeling of the fuel mass loss rate (MLR)
 - Advanced approach
 - Arrhenius reaction rates (Lautenberger & Fernandez-Pello, Combust. Flame 156:1503-1513, 2009)

$$\dot{m}_{Rd}^{\prime\prime\prime} \Delta V = \left(\frac{\rho_{s,ws} (1 - \psi_{ws}) x_{ws} \Delta V}{\left(\rho_{s,ws} (1 - \psi_{ws}) x_{ws} \Delta V\right)_{\Sigma}}\right)^{n_{Rd}} (\rho_{s,ws} (1 - \psi_{ws}) x_{ws} \Delta V)_{\Sigma} \times A_{Rd} \exp\left(-\frac{E_{Rd}}{RT_s}\right)$$

$$\dot{m}_{Rp}^{\prime\prime\prime}\Delta V = \left(\frac{\rho_{s,ds}(1-\psi_{ds})x_{ds}\Delta V}{\left(\rho_{s,ds}(1-\psi_{ds})x_{ds}\Delta V\right)_{\Sigma}}\right)^{n_{Rp}} \left(\rho_{s,ds}(1-\psi_{ds})x_{ds}\Delta V\right)_{\Sigma} \times A_{Rp} \exp\left(-\frac{E_{Rp}}{RT_{s}}\right)$$

- Modeling of the fuel mass loss rate (MLR)
 - Advanced approach
 - Arrhenius reaction rates (Lautenberger & Fernandez-Pello, Combust. Flame 156:1503-1513, 2009)

$$\begin{split} \dot{m}_{Rop}^{\prime\prime\prime} \Delta V &= (\frac{\rho_{s,ds}(1-\psi_{ds})x_{ds}\Delta V}{(\rho_{s,ds}(1-\psi_{ds})x_{ds}\Delta V)_{\Sigma}})^{n_{Rop}} \; (\rho_{s,ds}(1-\psi_{ds})x_{ds}\Delta V)_{\Sigma} \\ &\times (\frac{Y_{g,O_2}}{Y_{g,O_2,air}})^{n_{O_2,Rop}} \times A_{Rop} exp(-\frac{E_{Rop}}{RT_s}) \end{split}$$

$$\begin{split} \dot{m}_{Rco}^{\prime\prime\prime} \Delta V &= (\frac{\rho_{s,c}(1-\psi_c)x_c\Delta V}{(\rho_{s,c}(1-\psi_c)x_c\Delta V)_{\Sigma}})^{n_{Rco}} \left(\rho_{s,c}(1-\psi_c)x_c\Delta V\right)_{\Sigma} \\ &\times (\frac{Y_{g,O_2}}{Y_{g,O_2,air}})^{n_{O_2,Rco}} \times A_{Rco} exp(-\frac{E_{Rco}}{RT_s}) \end{split}$$

- Modeling of the fuel mass loss rate (MLR)
 - Advanced approach
 - Governing equations (Lautenberger & Fernandez-Pello, *Combust. Flame* **156**:1503-1513, 2009)

$$\begin{split} \frac{\partial}{\partial t} \left(\rho_{s,ws} (1 - \psi_{ws}) x_{ws} \Delta V \right) &= - \dot{m}_{Rds}^{\prime\prime\prime} \Delta V \\ \frac{\partial}{\partial t} \left(\rho_{s,ds} (1 - \psi_{ds}) x_{ds} \Delta V \right) &= + \eta_{ds,Rd} \dot{m}_{Rd}^{\prime\prime\prime} \Delta V - \dot{m}_{Rp}^{\prime\prime\prime} \Delta V - \dot{m}_{Rop}^{\prime\prime\prime} \Delta V \\ \frac{\partial}{\partial t} \left(\rho_{s,c} (1 - \psi_c) x_c \Delta V \right) &= + \eta_{c,Rp} \dot{m}_{Rp}^{\prime\prime\prime} \Delta V + \eta_{c,Rop} \, \dot{m}_{Rop}^{\prime\prime\prime} \Delta V - \dot{m}_{Rco}^{\prime\prime\prime} \Delta V \\ \frac{\partial}{\partial t} \left(\rho_{s,a} (1 - \psi_a) x_a \Delta V \right) &= + \eta_{a,Rco} \dot{m}_{Rco}^{\prime\prime\prime} \Delta V \\ \frac{\partial}{\partial t} \left(\bar{\rho}_g Y_{g,O_2} \bar{\psi} \Delta V \right) + \frac{1}{\phi} \frac{\partial}{\partial \zeta} \left(\phi \, \dot{m}_\zeta^{\prime\prime} Y_{g,O_2} \right) \Delta V \\ &= \frac{1}{\phi} \frac{\partial}{\partial \zeta} \left(\phi \, \bar{\psi} \bar{\rho}_g \bar{D}_g \, \frac{\partial Y_{g,O_2}}{\partial \zeta} \right) \Delta V - \eta_{O_2,Rop} \dot{m}_{Rop}^{\prime\prime\prime} \Delta V - \eta_{O_2,Rco} \dot{m}_{Rco}^{\prime\prime\prime} \Delta V \end{split}$$

- Modeling of the fuel mass loss rate (MLR)
 - Advanced approach
 - Governing equations (Lautenberger & Fernandez-Pello, *Combust. Flame* **156**:1503-1513, 2009)

$$\begin{split} \dot{m}_{\zeta}^{\prime\prime} &= -\frac{\overline{K}}{v_g} \times \frac{\partial p}{\partial \zeta} \\ \frac{\partial}{\partial t} \left(\frac{M_g}{RT_g} p \bar{\psi} \Delta V \right) &= \frac{1}{\phi} \frac{\partial}{\partial \zeta} \left(\phi \frac{\overline{K}}{v_g} \frac{\partial p}{\partial \zeta} \right) \Delta V + \dot{m}_{sg}^{\prime\prime\prime} \Delta V \\ \left(\bar{\rho}_s \bar{c}_s (1 - \bar{\psi}) + \bar{\rho}_g \bar{c}_{p,g} \bar{\psi} \right) \frac{\partial T_s}{\partial t} \Delta V + \dot{m}_{\zeta}^{\prime\prime} \bar{c}_{p,g} \frac{\partial T_s}{\partial \zeta} \Delta V \\ &= \frac{1}{\phi} \frac{\partial}{\partial \zeta} \left(\left((1 - \bar{\psi}) \bar{k}_s + \bar{\psi} \bar{k}_g \right) \phi \frac{\partial T_s}{\partial \zeta} \right) \Delta V + \dot{q}_{hrr}^{\prime\prime\prime} \Delta V \end{split}$$

- Modeling of the fuel mass loss rate (MLR)
 - > Advanced approach
 - Fuel mass loss rate

$$\dot{m}_f^{\prime\prime} = \int_{depth} (\eta_{f,Rp} \, \dot{m}_{Rp}^{\prime\prime\prime} + \eta_{f,Rop} \, \dot{m}_{Rop}^{\prime\prime\prime}) \, d\zeta$$

- Modeling of the fuel mass loss rate (MLR)
 - > Advanced approach
 - Input data

Thermal properties of wet solid	$ ho_{s,ws}$, $k_{s,ws}$, $c_{s,ws}$, ε_{ws}
Thermal properties of dry solid	$\rho_{s,ds}, k_{s,ds}, c_{s,ds}, \varepsilon_{ds}$
Thermal properties of char	$ \rho_{s,c}, k_{s,c}, c_{s,c}, \varepsilon_c $
Thermal properties of ash	$ \rho_{s,a}, k_{s,a}, c_{s,a}, \varepsilon_a $
Porosity and permeability of wet solid	ψ_{ws} , K_{ws}
Porosity and permeability of dry solid	ψ_{ds} , K_{ds}
Porosity and permeability of char	ψ_c , K_c
Porosity and permeability of ash	ψ_a , K_a
Drying reaction	A_{Rd} , E_{Rd} , n_{Rd} , ΔH_{Rd} , $\eta_{ds,Rd}$
Thermal pyrolysis reaction	A_{Rp} , E_{Rp} , n_{Rp} , ΔH_{Rp} , $\eta_{c,Rp}$
Oxidative pyrolysis reaction	$A_{Rop}, E_{Rop}, n_{Rop}, n_{O_2,Rop}, \Delta H_{Rop}, \eta_{c,Rop}, \eta_{O_2,Rcp}$
Char oxidation reaction	$A_{Rco}, E_{Rco}, n_{Rco}, n_{O_2,Rco}, \Delta H_{Rco}, \eta_{a,Rco}, \eta_{O_2,Rco}$

- Modeling of the fuel mass loss rate (MLR)
 - Advanced approach
 - Many of the model parameters cannot be measured and remain unknown
 - Model parameters determined by comparison between model predictions and experimental results from micro-scale tests (e.g. thermogravimetric analysis) and bench-scale tests (e.g., cone calorimeter, Fire Propagation Apparatus)
 - This comparison often uses optimization methods

- Modeling of the fuel mass loss rate (MLR)
 - > Advanced approach
 - Example: white pine (Lautenberger & Fernandez-Pello, Combust. Flame 156:1503-1513 (2009)

$$\Delta = 3.8 \text{ cm}$$
 $G = 40 \text{ kW/m}^2$
 $x_{O_2,g} = 0.21$
 $t = 100 \text{ s}$

- Modeling of the fuel mass loss rate (MLR)
 - > Advanced approach
 - Example: white pine (Lautenberger & Fernandez-Pello, Combust. Flame 156:1503-1513 (2009)

$$\Delta = 3.8 \text{ cm}$$
 $G = 40 \text{ kW/m}^2$
 $x_{O_2,g} = 0.21$
 $t = 100 \text{ s}$

- Modeling of the fuel mass loss rate (MLR)
 - Advanced approach

• Example: white pine (Lautenberger & Fernandez-Pello, Combust. Flame 156:1503-1513 (2009)

$$\Delta = 3.8 \text{ cm}$$
 $G = 40 \text{ kW/m}^2$
 $x_{O_2,g} = 0.21$
 $t = 100 \text{ s}$

- Modeling of the fuel mass loss rate (MLR)
 - > Advanced approach

• Example: white pine (Lautenberger & Fernandez-Pello, Combust. Flame 156:1503-1513 (2009)

$$\Delta = 3.8 \text{ cm}$$
 $G = 40 \text{ kW/m}^2$
 $x_{O_2,g} = 0.21$
 $t = 100 \text{ s}$

- Control of numerical accuracy
 - The accuracy of the solution of the solid phase equations is controlled by the spatial resolution

 $\Delta x_s \le 100 - 200 \, \mu m$

Compartment Fire Modeling

- Outline
 - ➤ Brief Review of Compartment Fire Dynamics
 - Fire Modeling Landscape
 - > Computational Infrastructure
 - Physical Modeling
 - **Examples**

Solvers

	FireFOAM ¹	FDS ²
Scheme	Second-order accurate, finite volume solver with implicit time integration	Second-order accurate, finite difference solver with explicit time integration
Turbulence	<i>k</i> -eqn model (default), dynamic Smagorinsky, WALE, Deardorff	Deardorff (default), dynamic Smagorinsky
Combustion	Global combustion eqn, Eddy Dissipation Model (EDM)	Global combustion eqn, Eddy Dissipation Model (EDM)
Radiation	DOM-FVM (prescribed radiant fraction, grey medium model, WSGG model)	DOM-FVM (prescribed radiant fraction, grey medium model, wide band model)
Soot	Flamelet-based model	Soot yield model
Pyrolysis	1D solid phase model	1D solid phase model
Mesh	Structured and unstructured grid	Structured (Cartesian) grid

¹ FM Global (USA), FireFOAM, Available from: https://github.com/fireFoam-dev

² NIST (USA), FDS, Available from: https://pages.nist.gov/fds-smv/

- Fine-grained LES (research-level) (FireFOAM)
 - > UMD experiment on flame suppression by inert gas
 - Flame structure: $L_f \sim 0.5$ m; $L_{eddy} \sim O(1\text{-}10 \text{ cm})$; $U_{eddy} \sim O(1 \text{ m/s})$ (Vilfayeau, White, Sunderland, Marshall, Trouvé, *Fire Safety J.*, 2016)

- Fine-grained LES (research-level) (FireFOAM)
 - Univ. Waterloo/NIST experiment on structure of pool fires
 - Flame structure: $L_f \sim 0.5$ m; $L_{eddy} \sim O(1-30 \text{ cm})$; $U_{eddy} \sim O(1 \text{ m/s})$

(Ahmed & Trouvé, submitted to Combust. Flame, 2020)

- Coarse-grained LES (engineering-level) (PyroSim/FDS)
 - > Study of fire smoke dynamics in commercial 5-story building
 - Building: $L \sim O(10s \text{ m})$; pressure effects; leakage paths

- Coarse-grained LES (engineering-level) (PyroSim/FDS)
 - Study of fire smoke dynamics in commercial 5-story building
 - Building: $L \sim O(10s \text{ m})$; pressure effects; leakage paths

Conclusion

- Fire modeling has experienced a remarkable growth in the past two decades
 - Fueled in particular by the development of FDS (and also now FireFOAM) and the development of open-source CFD software
 - Fire models have become routine fire safety engineering tools
- Fire modeling features several technical challenges
 - Modeling of complex (solid) fuel sources (pyrolysis processes)
 - > Relatively slow, buoyancy-driven flow
 - Combustion with flame extinction/ignition
 - Boundary layer flames
 - Soot formation
 - Spectrally-resolved radiation and turbulence-radiation interactions
 - Water spray
 - Flame and smoke chemistry effects (toxicity)

Conclusion

Organizational challenge

- The fire modeling community is small, fragmented, geographically dispersed, without a history of well-defined standards and without a consensus on well-defined objectives
- There is a need for a coordinated effort to organize and strengthen the fire modeling community

MaCFP

- The IAFSS Working Group on Measurement and Computation of Fire Phenomena (the MaCFP Working Group) (http://www.iafss.org/macfp/)
 - A recent initiative endorsed by the International Association for Fire Safety Science (IAFSS, http://www.iafss.org)
 - A forum between experimentalists and modelers to establish a common framework around the topic of CFD validation
 - A regular series of workshops
 - A list of community-approved experiments
 - A data repository (<u>https://github.com/MaCFP</u>)