
MACQUERON Corentin – Expert Modélisation thermique & Mécanique des fluides

WYGAS Benoît – Data Scientist / ML Engineer

35èmes journées du Groupe du RésoFeux – 10 Juillet 2025

L’optimisation mathématique
appliquée à la sûreté incendie

Couplage CFAST-Optimiseur Python pour la réalisation d’études de sensibilités
« intelligentes » et d’abaques de prédimensionnement

C
O

N
F

ID
E

N
T

IE
L

 O
R

A
N

O

2

Le besoin

Le métier Modélisation réalise de nombreuses études de type « calcul »
pour estimer la température de cibles de sûreté (structures métalliques,
panneaux Lexan, etc.) en cas de feu d’équipements divers (armoires
électriques, rétentions de liquides, etc.)

Ces études font intervenir de très nombreux paramètres « entachés »
d’incertitude : fraction radiative, taux de suites, émissivités, débits de
ventilation, taux de fuite, etc.

Ces paramètres peuvent avoir un impact très significatif et peuvent interagir
entre eux. Il n’est pas trivial de déterminer le scénario le plus « pénalisant »

Il est donc nécessaire de réaliser des études de sensibilités

Nous utilisons principalement les logiciels CFAST et FDS du NIST, mais
également un code « maison » appelé UltraFAST

C
O

N
F

ID
E

N
T

IE
L

 O
R

A
N

O

3

Le besoin

Le métier Sûreté sollicite le métier Modélisation pour
des études de sûreté incendie avec des questions qui
reviennent souvent, du type :

« Ma structure acier est à 3 mètres d’une armoire
électrique en feu, ça passe ou pas? »

Il y a donc un besoin de créer des abaques pour les
cas les plus fréquents pour assister et
« autonomiser » le métier Sûreté en mode « prédim »

Ces abaques se « réduisent » à une température
maximale en fonction d’une distance au feu. Ils
doivent donc être enveloppes de l’intégralité du
« champ des possibles » et requièrent de ce fait des
études de sensibilités massives également

Exemple d’abaques

C
O

N
F

ID
E

N
T

IE
L

 O
R

A
N

O

4

Le besoin

Ces deux besoins (études de sensibilité
massives et abaques pénalisants) nécessitent
de maîtriser des méthodes d’exploration fiables
et robustes dans des espaces mathématiques
de « grandes » dimensions

Les outils disponibles (CData du NIST par
exemple) se basent usuellement sur des
approches de type Monte Carlo telles que la
recherche aléatoire

Cette approche n’est malheureusement pas
« frugale » et peut donc nécessiter beaucoup
de temps computationnel, et son caractère
enveloppe est très incertain en grandes
dimensions

CData s’est par ailleurs révélé ne pas permettre
de faire varier certains paramètres importants
(fraction radiative par exemple)

NIST Technical Note 1889 CFAST Fire Data Generator (CData)

C
O

N
F

ID
E

N
T

IE
L

 O
R

A
N

O

5

Le besoin

Nous avons donc développé des approches de couplage d’algorithmes
d’optimisation en Python avec des solveurs incendie comme CFAST et avons
développé UltraFAST, un code incendie « maison » plus robuste et beaucoup
plus rapide que CFAST en cas de sous-ventilation

Cette approche est usuellement beaucoup plus rapide en temps de calcul, et
beaucoup plus efficace vis-à-vis du caractère enveloppe du résultat, les
algorithmes utilisés étant en effet guidés « intelligemment » plutôt que « lâchés
au hasard »

Il reste néanmoins bien évidemment impossible de démontrer
mathématiquement que la configuration la plus pénalisante a réellement été
trouvée, et quand bien même elle l’aurait été, les modèles numériques-physiques
utilisés restent imparfaits

L’absolu n’existe donc pas, mais ce n’est pas une raison pour ne pas essayer de
« maximiser » le scénario. Cette approche peut venir non pas en remplacement
mais en complément d’une étude de type Monte Carlo

Cette philosophie a été partagée avec l’ASNR qui encourage l’approche

C
O

N
F

ID
E

N
T

IE
L

 O
R

A
N

O

6

Méthodologie

Les paramètres « certains » sont fixés
(puissance du feu par exemple), puis on
fait varier les nombreux autres
paramètres d’entrée non « maîtrisés »
(une trentaine)

On cherche à trouver les cas qui
maximisent la température de la cible
de sûreté

"exterior_pressure": (101125.0, 101325.0),
"interior_humidity": (0.0, 100.0),
"lower_oxygen_limit": (0.10, 0.15),
"mat_emissivity": (0.7, 1.0),
"mat_thermal_conductivity": (0.57,3.0),
…

Exemple de paramètres :

C
O

N
F

ID
E

N
T

IE
L

 O
R

A
N

O

7

Outils

Pour les algorithmes d’optimisation, nous utilisons la librairie SciPy avec le module
scipy.optimize et la librairie pycma

Pour le lancement des PEX aléatoires, nous utilisons la librairie Numpy avec la classe
numpy.random.Generator

Nous utilisons également la classe scipy.stats.qmc.LatinHypercube pour générer des
points par échantillonnage hypercube latin

C
O

N
F

ID
E

N
T

IE
L

 O
R

A
N

O

8

Résultats - CFAST
Les algorithmes d’optimisation permettent de trouver les configurations les plus pénalisantes avec moins d’itérations que
les approches de type Monte Carlo.

Usuellement, l’approche « intelligente » requiert ~30 X moins de temps computationnel (à puissance de calcul égal) et
permet de trouver des températures de cible 26.5 % plus élevées (en termes d’échauffement par rapport à la température
initiale)

Algorithmes d’optimisation :

CMA-ES : Convolution Matrix Adaptation Evolution Strategy

GSA : Generalized Simulated Annealing

SLSQP : Sequential Least Squares Programming

Méthode de type Monte Carlo/ Quasi-Monte Carlo

LHS : Latin Hypercube Sampling

Random Search

E
c
h

e
lle

 c
la

s
s
iq

u
e

E
c
h

e
lle

 lo
g

a
ri
th

m
iq

u
e

C
O

N
F

ID
E

N
T

IE
L

 O
R

A
N

O

9

Comparaison sur-ventilation & sous-ventilation

"comp_width_x": (10, 40), # longueur du local
"comp_depth_y": (10, 40), # largeur du local
"comp_height_z": (10, 40), # hauteur du local

"comp_width_x": (3, 40), # longueur du local
"comp_depth_y": (3, 40), # largeur du local
"comp_height_z": (3, 40), # hauteur du local

Sur-ventilé :

Sous-ventilé :

Les configurations les plus pénalisantes se
trouvent (souvent) dans des cas de sous-
ventilation

Problème : en sous-ventilation, le temps
de calcul CFAST peut devenir très
important (des semaines…)

Nous utilisons donc un autre solveur
incendie développé en interne à Orano :
UltraFAST (tableur Excel à l’origine,
converti en Python)

C
O

N
F

ID
E

N
T

IE
L

 O
R

A
N

O

10

Conversion d’UltraFAST en Python (pyUltraFAST)

Avantages de la version Python :

• Parallélisation native sur serveurs
HPC avec dask

• Algorithmes plus complexes utilisables

Exemple de KTESTs de « vérification » en utilisant
SLSQP (déterministe) UltraFAST vs pyUltraFAST

C
O

N
F

ID
E

N
T

IE
L

 O
R

A
N

O

11

Résultats - pyUltraFAST

Ces abaques permettent de répondre rapidement aux questionnements du métier Sûreté, sans devoir lancer de nouvelles
études à chaque fois.

Au total, près de 900 configurations seront générées pour couvrir l’ensemble des cas demandé par le métier.

C
O

N
F

ID
E

N
T

IE
L

 O
R

A
N

O

12

Conclusion

Orano a développé des outils permettant de réaliser des
études de sensibilités « intelligentes » par algorithmes
d’optimisation mathématique, permettant de trouver plus
rapidement des configurations plus sécuritaires qu’avec
les méthodes Monte Carlo aléatoires « classiques » pour
ses études d’ingénierie incendie

Les approches « intelligente » et « aléatoire » ne sont pas
forcément exclusives mais potentiellement
complémentaires pour renforcer la sûreté

Cette approche a été partagée avec l’ASNR qui encourage
la démarche

Un « papier » sur le sujet a été rédigé et est disponible

C
O

N
F

ID
E

N
T

IE
L

 O
R

A
N

O

13

Questions?

Worst case optimization applied to fire safety engineering with

optimization algorithm

Benôıt WYGAS1 Corentin MACQUERON2

Orano Projets
{benoit.wygas, corentin.macqueron}@orano.group

Abstract

Investigating fire hazards is an essential aspect of nuclear safety. The fire risk modeling software,
CFAST, is commonly used to conduct these studies. Traditional approaches often involve stochastic
methods such as Monte Carlo analysis in conjunction with CFAST (CData) for fire safety research
and design. This article introduces a novel approach that integrates optimization algorithms within
CFAST to identify penalizing configurations that maximize target’s surface temperature. Our pri-
mary focus is on Nelder-Mead and SLSQP algorithms. Results indicate that optimization methods
can deliver comparable or superior performance to stochastic methods in certain cases, especially
in our last scenario where a significant relative heating ratio was observed between the stochastic
and optimization methods. Therefore, optimization methods can serve as a valuable supplement to
stochastic methods in fire safety research. Using both method is crucial in the context of nuclear
engineering.

Keywords: Fire Safety, Nuclear plant, Optimization, Stochastic process, CFAST, CData, Latin
hypercube sampling

1

1 Introduction

In the context of nuclear engineering, fire hazards represent a significant risk. They are likely to trigger
incidents or critical situations and may also lead to the dispersion of harmful substances into the environ-
ment. Aspen Plus, a chemical process simulator, has a built-in optimization module based on sequential
quadratic programming [2]. Moreover COMSOL has a programming structure based in MATLAB that
allow to use genetic algorithm for multi-objective optimization [11]. Because of the presence of flammable
materials and various heat sources in nuclear plants, fire safety is given special attention. Nuclear regu-
lations impose that safety studies for nuclear facilities must use modeling software specifically qualified
and certified for this purpose.

At Orano, the two primary fire risk modeling software that are qualified are FDS (Fire Dynamics
Simulator) [6] and CFAST [9] (Consolidated Fire and Smoke Transport). This study will focus on CFAST
software, comparing various methods to identify the most penalized cases in a given scenario. Identifying
these cases is vital for designing nuclear plants, as they must comply to the safety margins and sizing
criteria set forth by regulatory standards. Here, we present a novel optimization method for identifying
the worst-case scenario within a large configuration space. In this comparative study, we found that
using optimization techniques, instead of standard stochastic methods, can yield comparable or superior
results.

2 Methods

The methods that have been proposed to find penalizing cases can be split in two main categories,
stochastic processes techniques and optimization algorithm. The methods that are based on stochastic
processes like Monte Carlo involves running lots of simulation. The second approach is a ”smarter” way
to obtain penalizing cases by using optimization algorithm that will minimize a objective function that
is wrapping the CFAST model.

2.1 Stochastic methods

Stochastic processes inherently require a substantial number of inputs or trials; in general, the results
tends to be more accurate as the number of trials increase. In our context, nothing ensures that we
reached the most penalizing cases when using such a random sampling. To find the maximal surface
temperature, our methodology needs to include a search strategy that thoroughly investigates the pos-
sible outcomes.

The CFAST Fire Data Generator (CData) is as software that has been developed to help users do
Monte Carlo analyses. Initially CData is made to obtain data from common devices and sensors, such
as heat and smoke detectors, within any chosen building environment and run Monte Carlo Analysis.
CData comprises four key components: a basic input handler, a distribution function module, a sampling
module, and a simulation engine.

Our internal tool, Fire Design of Experiments (FireDoE), has a strong resemblance to CData because
it allow us to conduct multiple CFAST experiments with specified ranges for input parameters. The ini-
tial 1,000 runs of FireDoE are dedicated to a basic sensitivity analysis, while the subsequent thousands
last enable us to conduct Latin Hypercube Sampling. Between these two phases is a phase of random
uniform sampling, similar to the capability provided by CData.

Latin Hypercube Sampling

Latin Hypercube Sampling (LHS) is a statistical method used to generate a sample of plausible col-
lections of parameter values from a multidimensional distribution. The technique is an extension of
stratified sampling which ensures that each interval of the distribution of the input variables is equally
represented. In LHS, the range of each input variable is divided into N non-overlapping intervals; from
each interval, a value is sampled at random. The sampled values for each variable form an N -dimensional
matrix, where each row corresponds to one stratified sample and each column to a variable. This matrix

2

is then randomly permuted to produce a sample that is representative of the overall distribution [7].

One of the main advantages of LHS is its ability to efficiently sample from high-dimensional spaces,
ensuring that each sample is as informative as possible, which is particularly beneficial when the output
is significantly affected by only a few input variables. This method provides a more comprehensive and
robust representation of the input parameter space compared to simple random sampling, especially
when dealing with complex models where certain inputs may have a disproportionate impact on the
output.

Another tool developed for computation of the distributions of fire model like CFAST, named Prob-
abilistic Simulation of Fire Scenarios (PFS), [5] is also available. However, it has not been updated to
be compatible with the latest version of CFAST.

2.2 Optimization algorithms

Optimization algorithms constitute a fundamental aspect of computational science, aimed at identifying
the most effective solutions within a defined set of constraints or bounds. These algorithms are pivotal in
systematically exploring and determining optimal solutions in various problem spaces, where the objec-
tives and constraints can vary significantly. Their application spans numerous scientific and engineering
disciplines, ranging from operational research and logistics to machine learning and systems engineering.
The essence of these algorithms lies in their methodical approach to problem-solving, whether it involves
minimizing costs, maximizing efficiency, or finding the best possible configuration among a set of options.

More formally, optimization involves the search for the minimum (or maximum) of a specific quantity,
called cost or objective function. Optimization problems can be write in the following general form:

(P) inf
x∈K

J(x).

Where J is a function mapping from RN to R and x a vector containing N real variables of the
following form x = (x1, . . . , xN) ∈ RN . Generally, the variables x1, . . . , xN satisfy constraints represented
by a subset K ⊆ RN . A solution to problem (P) exists if we can find a set of variables x0 ∈ K such that

∀x ∈ K J(x0) ≤ J(x).

In such cases x0 is called a minimizer (or point of minimum) of J over K, and J(x0) is considered the
minimum value of J over K.

For the purposes of this paper, our focus will be on optimization methods such as the Sequential
Least Squares Programming Method and the Nelder-Mead algorithm.

Sequential Least Squares Programming Method

This technique is used on mathematical problems for which constraints and the objective function are
two fold continuously differentiable. In SLSQP, each iteration involves solving two subsidiary problems:
a linear program (LP) and equality-constrained quadratic program (EQP) here, LP used to determine
an active set and EQP used to compute the total step. It is able to process constraints on the problem,
so for the exhibition of the algorithm, study a general nonlinear programming:

min
x∈Rn

f(x), (1)

Subject to

gj(x) = 0, j = 1, . . . , k,

gj(x) ≥ 0, j = k + 1, . . . ,m,

xl ≤ x ≤ xu.

3

Where m represents the number of equality and inequality constraints and k is the number of equal-
ity constraints. This constrained optimization problem may consistently be reformulated using the
Lagrangian method and the Lagrange function L(x, λ):

L(x, λ) = f(x)−
m∑
j=1

λjgj(x)

min
x,λ

L(x, λ) such that xl ≤ x ≤ xu.

(2)

In eq. (2) function f(x) is the objective function which left out for the minimization problems, where
it is constant.

Nelder-Mead Algorithm

The Nelder-Mead algorithm, introduced by J. A. Nelder and R. Mead, is a well-known method for opti-
mizing multidimensional functions without constraints. It operates through a simplex, a geometric figure
analogous to a triangle in higher dimensions, which adapts and moves through iterative steps—reflection,
expansion, contraction, and shrinkage—seeking the function’s minimum value [8]. The strength of this
method lies in its simplicity and the fact that it does not require derivative calculations, making it ideal
for functions where derivatives are unavailable or hard to determine. Despite being less advanced than
other optimization methods, its straightforwardness keeps it in active use for various applied mathemat-
ics and engineering problems.

Regarding the selection of these algorithms, they have been chosen for their documented efficacy.
While there is a wide array of optimization methods available, our intention is not to provide an exhaus-
tive review of every available option. Instead, our focus is to show how these particular methods, when
applied in conjunction with CFAST, can effectively identify penalized scenarios in a manner similar to
stochastic approaches.

2.3 Experimental Design

In each experiment, the objective is to identify the most penalized cases, specifically those where the
target surface temperature (TRGSURT) is maximized. 11 targets will be strategically positioned on
different location within the compartment.

The experiment design includes both fixed parameters (detailed in the Appendix under ”Fixed Pa-
rameters”) and variable parameters (listed in the Appendix under ”Variable Parameters”) which will
variate within predefined ranges. The experiments are divided into two scenarios based on compartment
size: the first scenario involves a larger compartment of 1800 m3, while the second scenario focus on a
smaller compartment of 120 m3. For each scenario, we employ both stochastic methods and a variety of
deterministic optimization algorithms to conduct the experiments. The outcomes will be systematically
compiled into a table for comparative analysis.

The initial experiments will be conducted using a simplified model of one of the larger compartments
(1800 m3). This simplification was necessary because CData, the software we use for running multiple
CFAST simulations, imposes certain limitations on our experiments. For instance, CData does not sup-
port variations in the fire Froude number.

2.3.1 Fire characterization

The Heat Release Rate (HRR), measured in kW, represents the speed at which heat is generated by
combustion. It stands as the most crucial yet challenging parameter to predict in assessing fire conse-
quences. This is because HRR fundamentally influences the estimation of conditions within fire-induced
phenomena, including plumes, ceiling jets, smoke layers, and flame radiation[1].

4

In general, the HRR is calculated using flammability properties of the fuel. This approach is easily
applied in the case of liquid and some plastic combustibles. These flammability parameters are the heat
of combustion (∆Hc, kJ/kg), and the specific burning rate (ṁ′′, kg/sec-m2). Using these two parameters,
along with the burning area, the HRR by the fire is estimated as:

Q̇f = ∆Hc · ṁ′′ ·A (3)

Figure 1: Heat Release Rate Profile

These four stages are not observed in all fires and do not need to be included in every analysis, as
long as the modeled fire conditions capture the fire hazards posed by the ignition source to the target.
The following list provides a few general notes on developing HRR profiles.

1. The incipient stage is not usually included due to its uncertainty in duration and that it is not
expected to generate thermal conditions that threaten the integrity of other targets in the room.

2. A fire may run out of fuel before reaching its peak HRR (steady burning stage). If the amount
of combustible is known, the analyst may choose to model the growth stage until all the fuel is
consumed.

3. Oxygen availability can affect the fire after it starts to grow. A fire may decay due to low oxygen
concentrations. In contrast, an additional supply of oxygen to an already low oxygen concentration
room may cause the fire to increase in intensity.

4. HRR profiles can be affected by combustible layouts in the room. Therefore, it is not always easy to
develop or find a profile for a specific situation. If a constant HRR profile is selected, the constant
value should be the peak fire intensity.

5. Temperature and heat flux results associated with the decay stage of the fire will, in general,
suggest less hazardous conditions than the growth of the fully developed stage. Once the fire starts
to decay, temperatures in the room will decrease to ambient conditions. As a result, and depending
on the objectives of the simulation, modeling the decay stage of the fire usually does not provide
critical information in support of risk decisions.

In our experiments, we aim to characterize electrical cabinet fires based on guidelines from NUREG
(Electrical Cabinet Large NUREG 1000 kW)[1]. The recommended HRR profiles for these cases have
been established by EPRI/NRC-RES.

Time to Peak (minutes) Steady Burning (minutes) Time to Decay (minutes)
Average 11.4 7.1 19

Table 1: HRR Profiles for Electical Cabinet Fires

A t2 function can be use for representing the growing phase of the fire. The t2 function is expressed
in the form:

Q̇(t) = min

{
Q̇peak, Q̇peak

(
t

τ

)2
}

(kW), (4)

5

where τ is the time to reach the peak HRR, Q̇peak is the peak HRR, and t is the current time.

We use a linear function for representing the decay stage phase of the fire. While a t2 function could
also replicate the degrowth phase, opting for a linear approach allows us to adopt a more conservative
representation.

Q̇ = Q̇peak(
t

τ
)2 (5)

Our cabinet fires are modeled as a mixture of Polyvinylchloride (PVC), Polymethylmethacrylate
(PMMA) and Polyethylene (PE). These polymers have the following composition [10] :

Polymer Composition
Polyvinylchloride, PVC CH1.5Cl0.50
Polymethylmethacrylate, PMMA CH1.6Cl0.40
Polyethylene, PE CH2

Table 2: Composition of polymer used for cabinet fire

To ensure the mass fraction of each polymer in the mixture (Polyvinylchloride [PVC], Polymethyl-
methacrylate [PMMA], and Polyethylene [PE]) sums to 1, we use random draws between 0 and 1 for each
polymer, adjusting to achieve a total sum of 1. The chemical composition of the fire is then determined
by the weighted average of these fractions. In CFAST simulations, fuels are modeled as hydrocarbons
composed of carbon, hydrogen, oxygen, nitrogen, and chlorine. For the purpose of characterizing electri-
cal cabinet fires, which are considered mixtures of PVC, PMMA, and PE, we use the following equation
as input parameters for CFAST:

Hydrogen = 1.5PV C + 1.6PMMA+ 1.9PE

Oxygen = 0.4PMMA

Chlorine = 0.5PV C + 0.13PE

2.3.2 CFAST workflow with optimizer

The workflow for coupling CFAST with an optimizer involves several key steps. Initially, we define the
bounds and the initial vector for our input parameters. Next, feature scaling is applied to normalize
these parameters between 0 and 1. This normalization is essential to prevent bias in the optimizer’s
performance. After scaling, all parameters are fed into the optimizer. Within our objective function,
we first revert the scaling of parameters to their original scale and then calculate specific physics-related
parameters. Specifically, this phase includes determining the leak area Aleak based on the pressure differ-
ence ∆P , the input flow rate Qvin and the output flow rate Qvout. This approach ensures the optimizer
operates efficiently along the fire model.

6

Inputs parameters

Scale Bounds and Vector

Pass to Optimizer

Unscale parameters

Compute physics related parameters

Create CFAST input file

Run CFAST simulation

Retrieve Target Surface Temperature

Optimized results

Objective

function

Figure 2: CFAST workflow along optimizer

From Bernoulli’s principle :

∆P =
1

2
ρξv2

with ρ = 1.205 kg ·m−3 density of dry air at 293, 15K

ξ = 2.025

v =
Qvout −Qvin

Aleak

Aleak =

√
−ρξ(Qvout −Qvin)2

2∆P
with ∆P ∈ [−200,−20] (6)

We also compute the fire area using the Froude Number (Zukowski) formula.

Q̇∗ =
Q̇

ρ∞cpT∞
√
gDD2

and Afire =
πD2

4

with ρ = 1.205 kg ·m−3 density of dry air at 293, 15K

cp = 1.007 kJ ·K−1 · kg−1 heat capacity of dry air at 293, 15K

T∞ = 293.15 K and g = 9.81 m · s−2

Afire = max

π

4

(
Q̇

Q̇∗ρ∞cpT∞
√
g

) 4
5

, 0.1

 (7)

Within the ”Compute physics-related parameters” step, we undertake more complex operations, in-
cluding recalculating an approximation of the true Heat Release Rate (HRR) that is computed during the
simulation. This implies that before launching a simulation of CFAST, HRR is recalculated. Since fire
area is linked to HRR Q̇ from eq. (7), fire area is also changed before launching the CFAST simulation.
The approximation made on HRR is based on oxygen limit which is set at 0.15.

7

By recalibrating the input parameters, we achieve simulations that are more realistic. Below is a
graphic comparison of the expected Heat Release Rate (HRR) and fire area against the default values.
This approach enhances the accuracy of our simulations, ensuring that our models are more close of
real-world scenarios.

Figure 3: HRR comparaison Figure 4: Fire Area comparaison

Our study is still subject to certain limitations arising from these specific assumptions, previously
listed: For instance, eq. (7) assumes that the areas considered are equal to or greater than 0.1 m2 and
that the ambient temperature T∞ is maintained at a constant 293 K throughout the simulation. These
conditions may not reflect a real-world scenarios, potentially affecting the applicability of our findings
across different settings or scales.

2.3.3 Hardware and software specifications

The simulations are executed on a computer equipped with an Intel Xeon CPU E5-2697 v3 @ 2.60GHz
and 256GB of RAM. We used version 7.7.3 of CFAST for our analyses and the version 3.8 of Python,
with various libraries. These include Scipy, which provides the scipy.optimize.minimize function for op-
timization tasks, as well as scikit-learn, pandas, and numpy for efficient data manipulation.

3 Results and discussion

The first case is designed for compatibility with all available methods and to ensure relatively quick
computation times; thus, it represents a simplified version of one of our compartments. This simplifica-
tion is imposed by the limitations of CData, which does not support the complex operations previously
detailed. As a result, only 12 parameters will vary in this experiment, chosen for their simplicity and
the feasibility of their variation within the constraints of our modeling tools.

8

3.1 Simplified large compartment (1800 m3)

Figure 5: Large compartment (1800 m3, 12 parameters), Target Surface Temperature Maximum

In our comparison within a straightforward scenario, the differences in results were minor, suggesting
comparable performance by both methodologies under basic conditions. Nevertheless, we expect that by
raising the number of variable parameters, the distinctions between these methods will be more evident.
Besides results founds are dependent of the algorithm itself and their parameters.

Methods Time (seconds)
CData (100k) 51 660
FireDoE (100k) 29 220
SLSQP: eps=1E-3 1 579
SLSQP: ftol=1E-9, eps=1E-4 4 160
Nelder Mead 19 270

Table 3: Large compartment (1800 m3, 12 parameters), elapsed time for computing

Both CData and FireDoE launch the same amount of simulations. However, CData requires a longer
duration to process 100,000 cases due to its consistent operation limited at 50% CPU load. This limita-
tion becomes more pronounced when the RAM usage reaches a quarter of the total capacity, resulting
in Fortran errors for some caes. In contrast, FireDoE’s, through manual configuration CPU usage was
set to not exceed 80%.

In terms of speed results revealed that all of the optimization methods outperformed random search
strategies (such as CData and FireDoE). However, the Nelder-Mead algorithm, despite its performance,
had relatively longer execution times. Based on the criterion of achieving the optimal balance between
value and time efficiency, the Sequential Least Squares Programming (SLSQP) method, with an epsilon
value of 1E-3, was selected for the next scenario. This decision is made based on SLSQP’s superior
performance ratio of value to time.

3.2 Large compartment (1800 m3)

The second case maintains a configuration similar to the first one but introduces more complex parame-
ters for variation, such as the fire Froude number, fire area, and specific constraints that were not feasible
with CData. These include maintaining a final pressure within a restricted range of -20Pa to -200Pa and
adjusting the chemical composition of the fire, as previously discussed. This approach allows for a deeper

9

exploration of the effects of these complex parameters on the simulation outcomes, offering insights into
their impact and the overall behavior of the fire under varied conditions.

Figure 6: Large compartment relative heating in (%) between FireDoE and SLSQP

As in the first scenario, differences between both methods are not that pronounced, but for some
specifiv target like TRGSURT 5 and TRGSURT 8 we obtain a relative heating above 12%. In average
SLSQP method perform slightly better while being faster to compute.

Methods Time (seconds)
FireDoE (100k) 25 920
SLSQP: eps=1E-3 7 363

Table 4: Large compartment (1800 m3, 24 parameters), elapsed time for computing

3.3 Small compartment (120 m3)

Last compartment is a smaller version of the 1800 m3 compartment with about the same inputs param-
eters but dimensioned for this volume. For example the input/output flow rate in m3 has been lowered
to stay between 1 to 10 volume of the compartment per hour.

10

Figure 7: 120 m3 compartment relative heating in (%) between FireDoE and SLSQP

Results obtain with the first target TRGSURT 1 and TRGSURT 2 are higher when using FireDoE.
But overall when considering others target we observe a significantly higher maximum temperature when
using the SLSQP method. This difference becomes even more pronounced when we examine the relative
heating across all targets.

Methods Time (seconds)
FireDoE (100k) 33 696
SLSQP: eps=1E-3 214 201

Table 5: Small compartment (120 m3, 12 parameters), elapsed time for computing

Moreover, the maximum value for TRGSURT 1 is not the maximum that SLSQP algoritgm was able
to find because the optimization process took way too much time 3.3. Nevertheless, SLSQP method was
very long to compute because CFAST was most of the time in under-ventilated cases.

Latin Hypercube Sampling

For stochatics methods, results reveal the efficiency of Latin Hypercube Sampling (LHS) in the 1800 m3

scenario, where half of the target values achieve their maximum within the LHS area, showcasing LHS’s
effectiveness in capturing significant regions of interest with fewer samples.

Figure 8: Cumulative maximum for TRGSURT 1 (1800 m3 compartment)

However, in the second scenario, LHS does not perform as well. Since none of the target reach their

11

maximum value within the LHS area.

Sensitive analysis of Zukoski number

We also conduct a small sensitive analysis on the inputs parameters that will variate, specially on Zukoski
number wich is a parameters that is not available from directly from CFAST inputs.

Figure 9: Zukokski influence over target temperature

While there is limit to this sensitive analysis because this method can’t identify interactions between
variables since it varies only one factor at a time. The main point here is not to understand deeply how
zukoksi number influence the target outputs but rather it is to know or not if this parameters has an
influence or not and as this small sensitive analysis show, the zukoksi number can have an influence over
the target temperature.

Conclusion

Optimization methods can be seen as a valuable complement to stochastic methods in identifying penal-
ized cases. A significant drawback of these methods is their iterative nature, which depends on previous
steps to compute the next one. Therefore, if they encounter a scenario that requires an extensive com-
putation time, they may never finish, unlike stochastic methods where a maximum runtime is typically
set. If the process doesn’t complete within this timeframe, that scenario can be discarded and another
sample taken. Nevertheless, optimization methods have the capacity to identify penalizing scenarios that
are often significantly more severe than those detected by stochastic methods. Using both methods for
determining uncertain parameters is particularly critical in the field of nuclear engineering.

A way to bypass CFAST run would be to create a machine learning model that can predict CFAST
outputs. This approach has already been validated for certain outputs such as ULT (Upper Layer
Temperature) [13] [12]. However, it has not yet been proven effective for predicting the target surface
temperature. Furthermore, only SLSQP and Nelder-Mead algorithms have been tested, and our initial
scenario demonstrates that the results obtained are dependent of the algorithm and its parameters. Ap-
plying global optimization algorithm such as simplicial homology algorithm (shgo) [3] could be highly
beneficial in this context, but also very time consumming.

12

Appendix

Numerical value

Large compartment (1800 m3) simplified, 12 parameters

Target CData (100k) FireDoE (100k) SLSQP : eps=1E-3 SLSQP : ftol=1E-9, eps=1E-4 Nelder Mead

TRGSURT 1 212.987 217.773 209.907 219.32 219.138
TRGSURT 2 547.118 551.349 553.879 554.222 553.303
TRGSURT 3 116.801 120.022 119.71 118.087 119.86
TRGSURT 4 107.49 110.657 111.803 106.678 112.828
TRGSURT 5 257.066 262.1 263.454 259.87 262.891
TRGSURT 6 157.217 160.66 159.395 158.26 161.977
TRGSURT 7 76.1434 78.0673 76.306 73.8142 81.1081
TRGSURT 8 92.9357 95.9317 95.9949 97.1132 97.793
TRGSURT 9 83.9596 86.9319 88.506 85.6749 88.513
TRGSURT 10 56.3953 59.6929 57.3668 49.1089 60.5492
TRGSURT 11 64.774 67.9563 68.0907 62.9191 68.9103
Mean 161.171545 164.649191 164.037491 162.278845 166.079145

Large compartment (1800 m3), 24 parameters

Target FireDoE (100k) SLSQP : eps=1E-3

TRGSURT 1 1012.73 1002.19
TRGSURT 2 1017.7 994.653
TRGSURT 3 119.093 130.145
TRGSURT 4 318.324 320.945
TRGSURT 5 285.139 319.767
TRGSURT 6 317.702 318.685
TRGSURT 7 116.282 116.16
TRGSURT 8 102.657 116.033
TRGSURT 9 115.251 116.569
TRGSURT 10 46.4505 46.7514
TRGSURT 11 52.2725 51.6256
Mean 318.509182 321.229455

Small compartment (120 m3), 24 parameters

Target FireDoE (100k) SLSQP : eps=1E-3

TRGSURT 1 1145.6 826.934
TRGSURT 2 1177.77 982.32
TRGSURT 3 454.461 549.258
TRGSURT 4 222.804 272.96
TRGSURT 5 197.697 198.878
TRGSURT 6 121.413 195.649
TRGSURT 7 110.242 178.578
TRGSURT 8 114.428 191.84
TRGSURT 9 111.134 192.327
TRGSURT 10 113.732 192.9
TRGSURT 11 113.807 191.684
Mean 353.008 361.211636

13

Variate Parameters for Bounds Optimization

The following table lists the input parameters, their respective bounds, and the initial value used in the
bounds optimization process:

Large compartment (1800 m3) simplified (12 parameters)
Inputs parameters Inital value (x0) Bounds (min, max) Units
PRESSURE 101325.0 (101125.0, 101325.0) Pa
RELATIVE HUMIDITY 0.5 (0.0, 1.0) %
MATERIAL EMMISIVITY 0.9 (0.7, 1.0)
MATERIAL CONDUCTIVITY 1.75 (1.0, 3.0) kW/(mK)
MATERIAL SPECIFIC HEAT 870E-3 (700E-3, 1121E-3) kJ/(kgK)
MATERIAL DENSITY 2300 (2000, 2500) kg/m3

TARGET EMMISIVITY 0.9 (0.2, 1.0)
TARGET CONDUCTIVITY 15.0 (14.0, 23.0) kW/(mK)
TARGET SPECIFIC HEAT 500E-3 (475E-3, 582E-3) kJ/(kgK)
TARGET DENSITY 7900 (7850.0, 8239.0) kg/m3

MECH VENTS INPUT FLOW 1 (0.9, 1.1) m3/s
MECH VENTS OUTPUT FLOW 1.2 (0.9025, 1.375) m3/s

Large compartment (1800 m3) (24 parameters)
Inputs parameters Inital value (x0) Bounds (min, max) Units
PRESSURE 101325.0 (101125.0, 101325.0) Pa
RELATIVE HUMIDITY 0.5 (0.0, 1.0) %
MATERIAL EMMISIVITY 0.9 (0.7, 1.0)
MATERIAL CONDUCTIVITY 1.75 (1.0, 3.0) kW/(mK)
MATERIAL SPECIFIC HEAT 870E-3 (700E-3, 1121E-3) kJ/(kgK)
MATERIAL DENSITY 2300 (2000, 2500) kg/m3

TARGET EMMISIVITY 0.9 (0.2, 1.0)
TARGET CONDUCTIVITY 15.0 (14.0, 23.0) kW/(mK)
TARGET SPECIFIC HEAT 500E-3 (475E-3, 582E-3) kJ/(kgK)
TARGET DENSITY 7900 (7850.0, 8239.0) kg/m3

MECH VENTS INPUT FLOW 1 (0.9, 1.1) m3/s
MECH VENTS OUTPUT FLOW 1.2 (0.9025, 1.375) m3/s
MECH VENTS FIRST CUTOFF 200 (100.0, 300.0) Pa
MECH VENTS SECOND CUTOFF 200 (100.0, 300.0) Pa
FIRE RADIATIVE FRACTION 0.35 (0.2, 0.5)
WALL VENTS BOTTOM 1 (0.1, 3.9) m
OUTPUT PRESSURE -100 (-200, -20) Pa
Zukoski Number 1.0 (0.25, 2.5)
PVC 0.5 (0, 1)
PMMA 0.5 (0, 1)
PE 0.5 (0, 1)

14

Small compartment 120 m3 (24 parameters)
Inputs parameters Inital value (x0) Bounds (min, max) Units
PRESSURE 101325.0 (101125.0, 101325.0) Pa
RELATIVE HUMIDITY 0.5 (0.0, 1.0) %
MATERIAL EMMISIVITY 0.9 (0.7, 1.0)
MATERIAL CONDUCTIVITY 1.75 (1.0, 3.0) kW/(mK)
MATERIAL SPECIFIC HEAT 870E-3 (700E-3, 1121E-3) kJ/(kgK)
MATERIAL DENSITY 2300 (2000, 2500) kg/m3

TARGET EMMISIVITY 0.9 (0.2, 1.0)
TARGET CONDUCTIVITY 15.0 (14.0, 23.0) kW/(mK)
TARGET SPECIFIC HEAT 500E-3 (475E-3, 582E-3) kJ/(kgK)
TARGET DENSITY 7900 (7850.0, 8239.0) kg/m3

MECH VENTS INPUT FLOW 1 (0.9, 1.1) m3/s
MECH VENTS OUTPUT FLOW 1.2 (0.9025, 1.375) m3/s
MECH VENTS FIRST CUTOFF 200 (100.0, 300.0) Pa
MECH VENTS SECOND CUTOFF 200 (100.0, 300.0) Pa
FIRE RADIATIVE FRACTION 0.35 (0.2, 0.5)
WALL VENTS BOTTOM 1 (0.1, 3.9) m
OUTPUT PRESSURE -100 (-200, -20) Pa
Zukoski Number 1.0 (0.25, 2.5)
PVC 0.5 (0, 1)
PMMA 0.5 (0, 1)
PE 0.5 (0, 1)

Visualisation of the compartment

Figure 10: Smokeview visualisation of the small 120 m3 compartment

Figure 11: Smokeview visualisation of the 1800 m3 compartment

15

Additionnal graphics

Figure 12: Cumulative maximum for each target (1800 m3 compartment)

Figure 13: Large compartment (1800 m3, 24 parameters), Target Surface Temperature Maximum

16

Figure 14: Small compartment (24 parameters), Target Surface Temperature Maximum

Limitations of the study

• Unfortunately FireDoE only works with version 7.1.2 of CFAST while optimization results have
been made with version 7.7.3 of CFAST see section 3.3 for more details.

• Due to time constraints, the study was limited to 100,000 runs, a decision that might restrict the
thoroughness of the comparison between optimization algorithms and random search. A larger
sample could provide a more definitive comparison.

Issue encountered

• In version 7.1.2 of CFAST some arbitraty value have made the model crash [4]. We had to upgrade
to version 7.7.3 for this particular reason.

• While upgrading to CFAST version 7.7.3 is that in underventilated cases the computation takes
lots of times to finish, a single simulation typically takes between days and weeks. It wasn’t the
case in 7.1.2 where computation was way faster.

• Initially we also had to use constraints that you specify to the optimizer but that limited our
choice of method. Moreover scipy optimize.minimize violate constraints during the optimization,
resulting of writing incorrect input file and then crashing CFAST simulation, so we implemented
these constraints mannualy inside our obejctive function in order to avoid this issue.

• CData does not allow us to variate lots of important parameters related to the fire.
RADIATIVE FRACTION, CHEMICAL, etc.

17

References

[1] EPRI/NRC-RES Fire PRA Methodology for Nuclear Power Facilities: Volume 2: Detailed Method-
ology. Technical Report EPRI TR-1011989 and NUREG/CR-6850, Electric Power Research Institute
(EPRI) and U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research (RES),
Palo Alto, CA and Rockville, MD, 2005.

[2] Aspen Technology, Inc. Aspen Plus User Guide. Aspen Technology, Inc., 2023.

[3] Stefan C. Endres, Carl Sandrock, und Walter W. Focke. A simplicial homology algorithm for
Lipschitz optimisation. Journal of Global Optimization, 72(2) S. 181–217, March 2018. ISSN 1573-
2916. doi: 10.1007/s10898-018-0645-y. URL: http://dx.doi.org/10.1007/s10898-018-0645-y.

[4] CFAST GitHub. Issue 669: [Error: at t (=r1) and stepsize h...], 2017. URL: https://github.
com/firemodels/cfast/issues/669.

[5] Simo Hostikka und Olavi Keski-Rahkonen. Probabilistic simulation of fire scenarios. Nuclear Engi-
neering and Design, 224(3) S. 301–311, October 2003. ISSN 0029-5493. doi: 10.1016/s0029-5493(03)
00106-7. URL: http://dx.doi.org/10.1016/S0029-5493(03)00106-7.

[6] Kevin B McGrattan, Howard R Baum, Ronald G Rehm, Anthony Hamins, Glenn P Forney, Jason E
Floyd, Simo Hostikka, und Kuldeep Prasad. Fire dynamics simulator–Technical reference guide.
National Institute of Standards and Technology, Building and Fire Research . . . , 2000.

[7] M. D. Mckay, R. J. Beckman, und W. J. Conover. A Comparison of Three Methods for Selecting
Values of Input Variables in the Analysis of Output From a Computer Code. Technometrics, 42
(1) S. 55–61, February 2000. ISSN 1537-2723. doi: 10.1080/00401706.2000.10485979. URL: http:
//dx.doi.org/10.1080/00401706.2000.10485979.

[8] J. A. Nelder und R. Mead. A Simplex Method for Function Minimization. The Computer Journal,
7(4) S. 308–313, January 1965. ISSN 1460-2067. doi: 10.1093/comjnl/7.4.308. URL: http://dx.
doi.org/10.1093/comjnl/7.4.308.

[9] Richard D Peacock. CFAST:: the consolidated model of fire growth and smoke transport. 1993. doi:
10.6028/nist.tn.1299. URL: http://dx.doi.org/10.6028/NIST.tn.1299.

[10] James G. Quintiere. Fundamentals of Fire Phenomena. Wiley, March 2006. ISBN 9780470091159.
doi: 10.1002/0470091150. URL: http://dx.doi.org/10.1002/0470091150.

[11] A Subbiah und O Laldin. Genetic algorithm based multi-objective optimization of electromagnetic
components using COMSOL® and MATLAB®. In COMSOL Conference Proceedings, 2016.

[12] Wai Cheong Tam, Eugene Yujun Fu, Richard Peacock, Paul Reneke, Jun Wang, Jiajia Li, und
Thomas Cleary. Generating Synthetic Sensor Data to Facilitate Machine Learning Paradigm for Pre-
diction of Building Fire Hazard. Fire Technology, 59(6) S. 3027–3048, August 2020. ISSN 1572-8099.
doi: 10.1007/s10694-020-01022-9. URL: http://dx.doi.org/10.1007/s10694-020-01022-9.

[13] Clarence Worrell, Louis Luangkesorn, Joel Haight, und Thomas Congedo. Machine learning of
fire hazard model simulations for use in probabilistic safety assessments at nuclear power plants.
Reliability Engineering & System Safety, 183 S. 128–142, March 2019. ISSN 0951-8320. doi: 10.
1016/j.ress.2018.11.014. URL: http://dx.doi.org/10.1016/j.ress.2018.11.014.

18

View publication stats

http://dx.doi.org/10.1007/s10898-018-0645-y
https://github.com/firemodels/cfast/issues/669
https://github.com/firemodels/cfast/issues/669
http://dx.doi.org/10.1016/S0029-5493(03)00106-7
http://dx.doi.org/10.1080/00401706.2000.10485979
http://dx.doi.org/10.1080/00401706.2000.10485979
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.6028/NIST.tn.1299
http://dx.doi.org/10.1002/0470091150
http://dx.doi.org/10.1007/s10694-020-01022-9
http://dx.doi.org/10.1016/j.ress.2018.11.014
https://www.researchgate.net/publication/393596586

	Optimisation_appliquée_à_la_sûreté_incendie_CoMa
	Incendie_vite-1
	Introduction
	Methods
	Stochastic methods
	Optimization algorithms
	Experimental Design
	Fire characterization
	CFAST workflow with optimizer
	Hardware and software specifications

	Results and discussion
	Simplified large compartment (1800 m3)
	Large compartment (1800 m3)
	Small compartment (120 m3)

