# **Experimental and Numerical Study on Flashovers Induced by VOC Accumulations in Forest Valley**

Jamaladdeen R, Coudour B, Garo JP, Wang HY



### Flashover induced by VOC accumulations in a valley

(VOC concentration > Low Flammability Limit)



Migration and accumulation of Volatile Organic Compounds (VOCs)

### Forest model configuration with distribution of the trees



### **Numerical modelling**

#### Mixture of gases

2D unsteady Euler-Euler approach (Star-CCM+)

Conservation equations: mass, momentum, species, turbulence kinetic energy, turbulence dissipation

### Porous Medium Model

$$\mbox{Darcy's law} : \qquad - \mbox{$\nabla p$} = \frac{\mu}{\mbox{$Kp$}} \mbox{$Vs$} + \mbox{$b\rho$} |\mbox{$Vs$}| \mbox{$Vs$}$$

### **Computational Mesh**

Mesh cell of 3 mm near wall in log-law region,  $30 < y^+ < 100$ 



### Rothermel fire spread model

$$\label{eq:surface_surface} \text{Surface fire spread rate}: \quad \text{ROS}_{surface} = \frac{I_p}{Q_{ig}^*}$$

Propagation flux with wind and slope effects : 
$$I_p = I_R \xi \; (1 + \varphi_w + \varphi_s)$$

$$\label{eq:Reaction intensity} \textbf{Reaction intensity}: \ \ I_R = -\frac{dw}{dt} \times h$$

Heat required to ignite a unit volume of fuel bed :  $\,Q_{ig}^* = \, \rho_b Q_{ig} \,$ 

Flaming residence time : 
$$\tau_R = \frac{384}{\overline{\overline{\sigma}}(inch^{-1})}$$

Transition of surface fire to a crown Fire ( Van Wagner criteria)

$$ROS_{crown} = ROS_{surface} + CFB(ROS_{active} - ROS_{surface})$$

CFB (Crown Fraction Burned) = 1

Crown Base Height, Crown Bulk Density, Stand Height





### Fuel bed characteristics, fuel load, moisture content, age, fire history

**Reaction intensity**: 
$$I_R = -\frac{dw}{dt} \times h = 3709.5 \text{ (Btu/ft}^2.min)$$

Flaming residence time :
$$\tau_R = \frac{384}{-\sigma(inch^{-1})} = 2.6 \text{ (min)}$$

Rate of crown fire spread: 
$$ROS_{crown} = 1.6 \text{ (ft/min)}$$



$$I_{crown} = \frac{\Big(\textit{HPA}_{surface} + \Big(\textit{W}_{canopy}\textit{H}_{canopy}\textit{CFB}\Big)\Big)\textit{ROS}_{crown}}{60} = 15579.9 \text{ (Btu/ft.min)}$$

### Flame length

$$L_{crown} = 0.45 \times (I_{crown})^{0.46} = 5.7 \text{ (ft)}$$

#### Reaction zone depth

$$D_{crown} = \tau_{R} \times ROS_{crown} = 4.2 \text{ (ft)}$$





### Volatile Organic Compounds (VOCs) from longleaf pine forest fire



| Most abundant compounds | Emission Factors from prescribed wildfires (g of VOC/kg of dry fuel burnt) | Mass flow rate (kg/s) |
|-------------------------|----------------------------------------------------------------------------|-----------------------|
| Methane                 | 5.20                                                                       | 0.0552                |
| Methanol                | 2.35                                                                       | 0.0249                |
| Ethane                  | 0.503                                                                      | 0.0053                |
| Benzene                 | 0.268                                                                      | 0.0028                |
| Toluene                 | 0.515                                                                      | 0.0055                |
| α-pinene                | 5.05                                                                       | 0.0536                |

### Validation of numerical model with ethane gas emissions

Velocity measurements: LDV (Laser Doppler Velocimeter)



Forest dimensions in reduced-scale (1/400): 2.5 m in length, 1 m in width, 0.062 m in height

Semi-angle: steep valley with  $\alpha{=}50^{\circ}$  , shallow valley with  $\alpha{=}80^{\circ}$ 

Ethane injection in porous region: 1.9 g/m3/s

Porous region above a forest canopy: 400 metallic cylindrical tubes

Inlet velocity of crossflow: 6 m/s



### Horizontal (U) and vertical velocities (V)



# Concentration of $C_2H_6$ at the lee side



# Concentration of $C_2H_6$ at the center



Insurmountable difficulty by using FID and LDV in the porous region

# Concentration of C<sub>2</sub>H<sub>6</sub> at the wind side



### Most abundant compounds from wildfire at $\alpha = 50^{\circ}$ at valley edge

( $\alpha$ , ranging from 30° to 80° with a wind speed of 6 m/s)



### Concentration of the VOCs at three positions for $\alpha = 50^{\circ}$



### Conclusion and future investigation

- Angle of a V-shaped valley which rangs from 30° to 80° influences significantly the dispersion of VOCs.
- Heavier compounds such as benzene, toluene and  $\alpha$ -pinene reach the flammability limits with an angle below 60.
- Concentrations of the VOC compounds at the lee side and the centre of the valley are more critical than those at the wind side.
- Hotter smoke plume should bring a part of VOCs in the atmosphere via natural convection.
- Thermal effects influence behaviours of eruptive forest fires at a low wind speed.



