

27^{ème} rencontres du GDR Feux 12 & 13 décembre 2019 - UMET, Lille

Organisé conjointement par le GDR Feux et le GT « Dégradation et comportement au feu des matériaux organiques » de la SCF

Table Ronde

Expérimentation et modélisation du comportement au feu des matériaux : de l'échelle du laboratoire au cas réel

Prof. Sophie DUQUESNE

Centrale Lille Institut UMET - UMR-CNRS 8207 Villeneuve d'Ascq, France Prof. Laurent FERRY

IMT Mines Alès UPR Polymères, Composites et Hybrides Alès, France

Top-Down

Introduction

L'approche « Top Down », le choix de l'utilisateur

Comment comprendre le comportement macroscopique d'un feu à partir de mécanismes élémentaires (dégradation, émission d'aérosols, propriétés intrinsèques des matériaux,...)

Introduction

L'approche « Bottom-Up », le choix du formulateur de matériaux

Autres grandeurs (fumées notamment)

Class	Test methods	Classification criteria	Additional classification
Au	EN 150 1716	PCS ≤ 2,0 M]/kg	
B1 _{ca}	EN 50399 (30 kW burner) and	$FS \le 1,75$ m and $THR_{12NSr} \le 10$ MJ and $Peak$ HRR ≤ 20 kW and $FIGRA \le 120$ Ws ⁻¹	smoke production and flaming droplets/particles and acidity
	EN 60332-1-2	H ≤ 425 mm	
B2 _{ce}	EN 50399 (20,5 kW Burner) and	$FS \le 1,5$ m; and $THR_{1200x} \le 15$ M]; and Peak HRR ≤ 30 kW; and FIGRA ≤ 150 Ws ³	smoke production and flaming droplets/particles and acidity
	EN 60332-1-2	H ≤ 425 mm	
۲.,	EN 50399 (20,5 kW Burner) and	$FS \le 2,0$ m; and $THR_{1200} \le 30$ M]; and Peak HRR ≤ 60 kW and FIGRA ≤ 300 Ws ¹	smoke production and flaming droplets/particles and acidity
	EN 60332-1-2	H ≤ 425 mm	
D _{ca}	EN 50399 (20,5 kW Burner) and EN 60332-1-2	THR ₁₂₀₀ \leq 70 M]; and Peak HRR \leq 400 kW; and FIGRA \leq 1300 Ws ³ H \leq 425 mm	smoke production and flaming droplets/particles and acidity
E.,	EN 60332-1-2	H ≤ 425 mm	
Fce	does not fulfil class E _o		

Comment prévoir le comportement au feu à pleine échelle à partir d'essais réalisés petite échelle sur des matériaux en développement

Bottom-Up

Introduction

L'approche « Bottom-Up », le choix du formulateur de matériaux

Problématique : Trouver des méthodes de caractérisation et de tests discriminantes

Introduction

Illustration dans le bâtiment

Université de Lille

Pertinence de l'approche

Classement	Conditions
A1 et A2	Matériaux inertes
В	FIGRA ≤ 120 W/s THR ≤ 7,5 MJ
С	FIGRA ≤ 250 W/s THR ≤ 15 MJ
D	FIGRA ≤ 750 W/s THR ≤ sans limite
E et F	Pas de critères sur FIGRA et THR

Les différentes échelles étudiées

Time Consumption

centralelille

CM

Université

delille

IMT Mines Alès

École Mines-Télécom

Analyse thermogravimétrique

entralelille

Pertinence à plus grande échelle ? Effet de la vitesse de chauffe Effet de l'atmosphère Multiprocessus

Les résultats vont dépendre de nombreux paramètres: type d'ATG utilisée, nature et volume des creusets, masse de l'échantillon, structure (poudre vs. matériau dense)....

Analyse thermogravimétrique

Analyse thermogravimétrique

Source : TA

Principe d'une ATG

TIARDITAR 31033

SUPERICURE DE CHIMIE

Université

delille

Paramètres clés : stabilité thermique, charring, interactions entre les constituants d'une formulation, paramètres cinétiques de la dégradation

Thermal Stability of Polymers

IMT Mines Alès

École Mines-Télécom

entrale**lille**

Analyse thermogravimétrique

Principe d'une ATG

Etude du système PU/APP/SiO₂

➢ <u>No degradation</u> of silica (mineral filler)

- \rightarrow <u>APP degradation</u> \rightarrow ammonia + water \rightarrow polyphosphoric acid \rightarrow P₄O₁₀
- Thermal stabilization at high T of APP + nano silica

ATG – Exemple d'étude

Etude du système PU/APP/OMPOSS

500

Etude du système PU/APP/OMPOSS

No synergy because : no chemical reaction? inappropriate rheology or mechanical resistance of char? OMPOSS degrades before the PU matrix?

- Conditions expérimentales
 - ≈2 mg de matière
 - Pyrolyse
 - Atmosphère inerte (N₂)
 - Rampe: de 0,5 à 5 K/s
 - 30 à 750°C
 - Oxydation
 - T=900°C
 - $O_2/N_2 = 20\%$
- Grandeurs mesurées
 - Débit calorifique (W/g) ou Heat Release Rate (HRR)
 - Chaleur totale dégagée (J/g) ou Total Heat Release (THR)
 - Capacité de libération de chaleur ou HRC
 - HRC = $pHRR/\beta$ (J/g)
 - Grandeur intrinsèque au matériau
 - Stabilité thermique

SUPERICURE OF CHIM

ICOLE NATIONALE

• T_D: onset dégradation, T_P: pic de dégradation

Université

de l ille

Génération segmentée des combustibles Quid des combustions incomplètes Temps de séjour dans combustor

Principe d'un MCC

- Comparaison ATG/PCFC : EHC
 - Exemple : gaine de câble PVC (PVC plastifié)

• Action phase gazeuse : variation de la température de combustion

Sonnier et al. Combustion and flame, Combustion and Flame 160 (2013) 2182-2193

- Couplage PCFC/FTIR
 - Analyse des gaz de combustion à différentes Tc

R. Sonnier, G. Dorez, H. Vahabi, C. Longuet, L. Ferry, J.M. Lopez-Cuesta, Combustion and Flame, 161, 1398-1407, 2014

750

750

800

 Residue CO₂

850

Cable A

Cable B

Cable C

850

20

800

900

900

others

Microcalorimètre de combustion

- Couplage PCFC/FTIR
 - Analyse des gaz de combustion à différentes Tc

A. Decimus, R. Sonnier, P. Zavaleta, S. Suard, L. Ferry, Journal of Thermal Analysis and Calorimetry, 138, 753-763, 2019

Time of

extinction

École Mines-Télécom

Cône Calorimètre

TIAROITAR 11011

SUPÉRIEURE DE CHIMII

Cône Calorimètre

Influence du porte échantillon

Influence de l'épaisseur

Fig. 3. Heat release rate plotted against time for HIPS and HIPS/15 wt.% Mg(OH) with sample thicknesses of 3 mm and 6 mm. The peak of heat release is strongly dependent on thickness for the thermally intermediate thick non-charring HIPS system, but not for the charring material, which achieves thermally thick behaviour even at the lower thickness.

Fig. 4. Heat release rate plotted against time for HIPS, measured using a sample holder setup according to ISO 5660 and a modified sample holder setup (*) to avoid thermal feedback from the back of the sample. External heat flux was 50 kW m⁻².

Heat release rate (HRR) and total heat release (THR) for glass fibre-reinforced PA 66 using applied heat fluxes between 30 and 75 kW m⁻². Data taken from [18].

Complex and multilayered material

IMT Mines Alès

École Mines-Télécom

centralelille

1 : Pile (PP / PE)

- 2 : Performance layer (infill)
 - 3 : Sand
 - 4 : Backing (PP / PET)

SUPÉRICURE DE CHIMI

TIAROITAR 11031

Université

de l ille

Radiant panel test EN ISO 9239-1

 \rightarrow Evaluation of the fire behaviour of floorings exposed to

- Flame propagation
- Smoke density
- Max test duration : 30 min
- Specimen size : (1050 x 230) mm²

Energy heat flux distribution

 \rightarrow Determination of the critical heat flux (CHF):

• Point where the flame stop (specimen extinguishment)

Université

de l ille

• Position of the front flame after 30 min of test (no self-extinguishment)

Radiant panel test EN ISO 9239-1

/IT Mines Alès

centralelille

Les différentes approches

Time Consumption

- Corrélation entre les paramètres des différents tests
- Développement de bancs d'essais à échelle laboratoire
- Modélisation

Corrélations entre les grandeurs mesurées ou calculées

- MCC/Cône
 - Corrélation observée par R. Lyon notamment sur polymères purs

Corrélations entre les grandeurs mesurées ou calculées

• MCC/Cône

ILANDITAN JIDJ1

SUPERICURE OF CHIMI

- Pas de corrélation sur pHRR
- Corrélation sur THR dépendante la nature des RFs

Université

de l ille

IMT Mines Alès

École Mines-Télécon

ntrale**lille**

Corrélations entre les grandeurs mesurées ou calculées

- MCC/Cône
 - Mise à profit de la non corrélation
 - Mise en évidence de l'effet barrière
 - Seulement visible au cône

R. Sonnier, L. Ferry, C. Longuet, F. Laoutid, A. Laachachi, Ph. Dubois, J-M. Lopez-Cuesta, Polymers for Advanced technologies, 22, 1091-1099, 2011

Kan

Corrélations entre grande échelle et échelle du matériau

• Exemples des câbles

SUPÉRIEURE DE CHIMI

11031

• Corrélation Cône/EN50399

delille

rale**lille**

IMT Mines Alès

École Mines-Télécor

Fire Curves

Small scale tests

Promat

Fire Protection using Intumescent Paints

Intumescence coatings are widely used in the *fire protection* of *steel structures* in building and may find application in *various sectors*

ICOLE NATIONALE

SUPERICURE OF CHIMI

delille

1400

1200

1000

800

600

400

RWS, RijksWaterStaat, NL

HCM, Modified HydroCarbon, Fr

centralelille

IMT Mines Alès

École Mines-Télécom

HC, HydroCarbon Eurocode 1

-RABT-ZTV (train), G

erature [°C]

Small scale tests

Small furnace test:

Development of furnace at the lab scale able to provide **Time/Temperature curves** according to the usual standards (e.g. UL 1709, ISO 834 ...)

Silicone-based intumescent coatings

Silicone formulation	N1 –intumescing coating
Silicone matrix	56%
Expandable graphite	25%
Calcium carbonate	12%
Clay	7%

Small scale tests

Char strength in situ: set-up (in reality)

Passage d'échelles – quelles problématiques?

- Effet de structure
 - Exemple des câbles
 - Petite échelle : test sur la gaine
 - Echelle intermédiaire : test sur la gaine ou tronçon de câble
 - Grande échelle : câble

Paramètres étudiés

- HF : flux incident
- N : nombre de câbles
- d : densité de câbles
- S: épaisseur de gaine
- I : quantité d'isolant

 $Y_{num}(a, \alpha, \beta, \gamma, \delta, \varepsilon) = a HF^{*\alpha} N^{*\beta} d^{*\gamma} S^{*\delta} I^{*\varepsilon}(a, \alpha, \beta, \gamma, \delta, \varepsilon) \varepsilon R^{6}$

M. Carcillo, A-S. Caro, R. Sonnier, L. Ferry, E. Gesta, C. Lagrève, Fire Safety Journal, 99, 12-21, 2018

Φ

Passage d'échelles – quelles problématiques?

(B)

(D)

- Effet de structure
 - Exemple de plaques
 - Phénomène d'effondrement

Université

delille

TIAROITAR 31033

SUPÉRIEURE DE CHIMI

(C)

Heat flux

100 n

100 mn

2,5 mm

Passage d'échelles – quelles problématiques?

- Effet d'assemblage
 - Exemple de plaques

Université

delille

TIANDITAN 31033

SUPERICURE DE CHIMIE

FIGURE 11 Comparison between heat release rates function of time for thermal degradation of PMMA, plywood (thickness 5 mm), and case B

IMT Mines Alès

École Mines-Télécom

(A)

PMMA

Heat flux : 50 kW/m²

100 mm

100 mm

(B)

Heat flux

100 m

100 mm

- Corrélation cône/SBI outil Conetools
 - Le HRR à l'essai SBI (HRR_{SBI}) est supposé résulter de la somme de contribution élémentaire de portion de structure.
 - Chaque portion de structure à un débit calorifique identique à celui mesuré au cône calorimètre (HRR_{cc}) à une irradiance de 40 kW/m² sur un élément de même nature mais
 - décalé dans le temps (d'un temps τ), ceci afin de traduire le phénomène de propagation
 - pondéré par un facteur $A_\tau\,$ qui correspond à l'aire de la portion de structure qui commence à bruler après un temps $\tau.$

• Loi de surface brûlée

CI

- t0 correspond au temps d'ignition, il est déterminé comme le temps au bout duquel le HRR dépasse 25 kW/m².
- Amax correspond à la surface maximale impliquée dans la combustion.
- 3 catégories de matériaux distinguées
 - I : la surface suit une loi exponentielle et atteint une valeur maximale de 0,2 m². Ce comportement est caractéristique des matériaux ayant une faible combustibilité
 - II : la surface évolue en 2 temps avec un premier plateau à 0,35 m² et un second plateau à 0,6 m²
 - III : la surface suit une loi exponentielle et atteint une valeur maximale de 0,6 m². Ce comportement est caractéristique des matériaux ayant une forte aptitude à la propagation de flamme

- Comment savoir à quelle catégorie appartient le matériau testé ?
 - Différents paramètres sont mesurés au cône
 - x₁ = Densité
 - $x_2 = THR_{300}$
 - $x_3 = \ln (HRR_{max})$
 - $x_4 = ln (SPR_{max})$
 - x₅=FIGRA_{CC}
 - Une analyse statistique multivariable a permis de déterminer un ensemble de fonctions linéaires de Fisher caractéristiques des comportements (I, II ou III)
- $F_{1} = x_{1} \ 0.02706 x_{2} \ 2.401 + x_{3} \ 48.444$ $-x_{4} \ 16.285 x_{5} \ 10.861 92.211$ $F_{11} = -x_{1} \ 0.001897 x_{2} \ 1.636 + x_{3} \ 38.132$ $-x_{4} \ 5.681 x_{5} \ 6.159 63.524$ $F_{111} = -x_{1} \ 0.00310 x_{2} \ 1.869 + x_{3} \ 43.957$ $-x_{4} \ 1.670 x_{5} \ 5.616 87.240$

➔ Le matériau suit le comportement (I, II ou III) pour lequel la fonction de Fisher donne le meilleur résultat

• Résultats Obtenus par A. Steen Hansen

Figure 6. $FIGRA_{0.2MJ}$ values predicted from cone calorimeter tests versus $FIGRA_{0.2MJ}$ values calculated from SBI test results for 100 single cases. The heavy lines show the *FIGRA* criteria limits for classes B, C, D and E.

A. Steen Hansen, Fire Mater. 2002; 26: 87–97

46

Passage d'échelles – Modélisation

• Comportement au feu de chemin de câbles

Conclusion

- Importance de l'approche multi-échelle pour
 - Analyser et modéliser les mécanismes élémentaires impliqués dans un scénario incendie
 - Gagner du temps dans la conception des matériaux
- Problèmes associés au changement d'échelle
 - Approche empirique
 - Reproduire des conditions aux limites et des phénomènes semblables aux différentes échelles
 - Déterminer les lois d'échelle
 - Approche par modélisation
 - Complexité des modèles
 - Difficulté à fournir des données d'entrée fiables

