

Étude Numérique des feux sous-ventilés

Bouaza LAFDAL (LEMTA / CSTB)

Encadrants :

Pascal BOULET (LEMTA) Rabah MEHADDI (LEMTA) El Mehdi KOUTAIBA (CSTB)

GDR de Nancy, 03-04 décembre 2020

Introduction

Introduction

- 1. K. Kawagoe , « Tech. Rep 27, BRI, 1958 »
 - Le premier à introduire le facteur de ventilation $A\sqrt{H}$
 - $\dot{m}_{in} = 0.5 A \sqrt{\mathrm{H}}$
 - $\dot{Q}_{in} = 1500 A \sqrt{\mathrm{H}}$
- 2. H. Takeda et K. Akita, «International Symposium on Combustion, 1981»
 - 200 essais pour étudier les effets de la ventilation sur le MLR
 - Identification de 4 régimes de combustion
 - Régime 1 : extinction par manque d'oxygène
 - Régime 2 : régime laminaire contrôlé par la ventilation
 - Régime 3: régime oscillatoire
 - Régime 4: régime stable contrôlé par la quantité du combustible
- 3. K. Kim et al, « Fire Safety Journal, 1993»
 - Des régimes similaires ont été observés par Kim et al (régime 3 et 4)

Introduction

- 4. L. Hu et al, « Combustion and Flame, 2019 »
 - Compartiment cubique de 0.4 m de côté avec un brûleur à gaz (propane)
 - $A\sqrt{\rm H} = 3.49 \times 10^{-4} 1.45 \times 10^{-2} m^{5/2}$
 - HRR = 0.77 115.28 kW
 - Identification de 3 régimes de combustion
 - Régime 1 : la réaction de combustion est totalement à l'intérieur du compartiment
 - Régime 2 : Une partie de la réaction se tient à l'extérieur du compartiment
 - Régime 3: La majeure partie de la combustion se tient à l'extérieur du compartiment

(b): Opening size: 0.25m (W) × 0.15m (H)

- Appréhender expérimentalement, numériquement et théoriquement les effets de la sous-ventilation sur l'évolution du feu.
- 2. Déterminer les frontières séparant les différents régimes de combustion, notamment caractériser le passage d'un feu piloté par le combustible « bien ventilé » à un feu sous-ventilé et identifier les conditions d'apparition des flammes externes (c'est-à-dire sortant par les ouvrants).
- 3. Proposer un modèle mathématique pour décrire les différents phénomènes thermiques et aérauliques mis en jeu dans un feu confiné.

Étude Numérique (FDS / FireFoam)

Simulations numériques

- > DIMENSIONS DU DISPOSITIF :
 - Longueur (D) = 2 m /1.2 m
 - Largeur (w) = 1.2 m
 - Hauteur (h) =1.2 m
 - Hauteur de la porte (H) : variable
 - Largeur de la porte (b) : variable
- > PROPRIÉTÉS DES PAROIS
 - Matériau : silicate de calcium
 - Chaleur spécifique : 970 J/Kg/K
 - Masse volumique : 2900 Kg/m³
 - Conductivité thermique : 0.22 W/m/K
 - Epaisseur : 5 cm

> FOYER

- Propane
- Longueur = 0.4 m
- Largeur = 0.4 m
- ➢ PARAMÈTRES D'ÉTUDE:
 - Dimensions de la porte : b et H
 - La puissance du feu (entre 25 kW et 3500 kW).

Simulations numériques

Convergence en maillage & en volume

/ 10

Convergence en maillage & en volume

F----

2 m

Configuration	2 m x 1.2 m x 1.2 m	1.2 m x 1.2 m x 1.2 m	ISO 9705 3.6 m x 2.4 m x 2.4 m
Puissance (kW)	25 – 3500	25 – 350	500 - 11500
$A\sqrt{\mathrm{H}}~(\mathrm{m}^{5/2})$	0.3718 - 0.8	0.1414 - 0.6	0.83 - 5.58
Nombre de simulations	108	36	72

/ 13

120

100

HRR_{all}

HRR_{in}

Régimes de combustion

$$\frac{\dot{Q}_{in}}{P} = f(\dot{Q}^*)$$
$$\dot{Q}^* = \frac{P}{\rho C_p T \sqrt{g} l^{5/2}}$$

- P : puissance prescrite
- ρ : masse volumique de l'air ambiant
- *Cp* : Chaleur spécifique de l'air ambiant
- T : Température ambiante
- g : accélération de la gravité
- *l* : longueur caractéristique
- $\dot{Q}^* < 0.6 \Longrightarrow \frac{\dot{Q}_{in}}{P} = 1$ (régime bien ventilé)
- $\dot{Q}^* > 0.6 \Longrightarrow \frac{\dot{Q}_{in}}{P} < 1$ (régime sousventilé)

•
$$\dot{Q}_{in}^{max} = 660 A \sqrt{H}$$

Variation de la température moyenne

- R1 : régime bien ventilé
- R2 & R3 : régimes sous-ventilés

Variation du débit massique

Configuration numérique

- > DIMENSIONS DU DISPOSITIF :
 - Longueur (D) = 2 m
 - Largeur (w) = 1.2 m
 - Hauteur (h) =1.2 m
 - Hauteur de la porte (H) : variable
 - Largeur de la porte (b) : variable
- PROPRIÉTÉS DES PAROIS
 - Matériau : silicate de calcium
 - Chaleur spécifique : 970 J/Kg/K
 - Masse volumique : 2900 Kg/m³
 - Conductivité thermique : 0.22 W/m/K
 - Epaisseur : 5 cm

> FOYER

- Propane
- Longueur = 0.4 m
- Largeur = 0.4 m
- ➢ PARAMÈTRES D'ÉTUDE:
 - Dimensions de la porte : b et H
 - La puissance du feu (entre 25 kW et 3500 kW).

 \dot{Q}^*

$$\dot{Q}^* = \frac{P}{\rho C_p T \sqrt{g} A \sqrt{H}}$$
$$\dot{Q}^*_{cri} = 1.135 \text{ (OpenFoam)}$$
$$\dot{Q}^*_{cri} = 0.6 \text{ (FDS)}$$
$$\dot{Q}^{max}_{in} = 1250 A \sqrt{H}$$
$$\dot{Q}^{max}_{in} = 660 A \sqrt{H}$$

FDS vs OpenFoam

Time

Time

/ 20

Résultats

 $Y_{O_2}^{lim} = 0\%$ $Y_{O_2}^{lim} = 5\%$

/ 21

Conclusions & Perspectives

Identification de 3 régimes de combustion

- Régime 1 : la réaction de combustion est totalement à l'intérieur du compartiment ($\dot{Q}_{in} = P$)
- Régime 2 : Une partie de la réaction se tient à l'extérieur du compartiment (Q_{in} < P)
- Régime 3: La majeure partie de la combustion se tient à l'extérieur du compartiment ($\dot{Q}_{in} \ll P$)

 \triangleright $\dot{Q}_{in}^{max} = 660A\sqrt{H}$ (FDS), $\dot{Q}_{in}^{max} = 1250A\sqrt{H}$ (OpenFoam), $\dot{Q}_{in}^{max} = 1500A\sqrt{H}$ (Kawagoe)

À venir : Une étude expérimentale et comparaison avec ces résultats numériques

Merci pour votre attention

