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Motivation

Motivation

Mass simulation and danger

Wildland fire spread is yet useful for an active fire
To account for danger with spread simulation would require to test every
potential ignition point at any time
At 1 simulations per Ha, 100 for ensembles
80 millions simulation for Corsica, 1 billion for 24 hours.
Too costly to generate daily maps in operational context using spread
models

Emulation of simulations with deep learning
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Wildfire simulation

From wildfire spread simulations to danger

ForeFire simulation
Emulated model - ForeFire.
Fire igniting anywhere in Corsica and spread freely during one hour.
All potential weather conditions

FIGURE – Example of an operational ForeFire simulation, Bigiglia 2017.
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Raster Inputs

Neural Network inputs

Gridded Input Data maps of Corsica used to describe the landscape in
ForeFire simulations ; their spatial resolution is approximately 80 m.
(a) Locations with an altitude of 0 m or less (mostly maritime waters) are
represented in blue.
(b) The color scheme corresponds to the classification of the Corine Land
Cover
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Scalar inputs

Neural Network Construction

Input Symbol Unit Type Range t
Ignition point coordinates (x , y ) m Raw Map of Corsica
Wind speed (Wx , Wy ) m s≠1 Raw [≠35, 35]2

Fuel moisture content (dead fuel) mc Raw [0.04, 0.3]
Heat of combustion perturbation H MJ kg≠1 Additive [≠5, 5]
Particle density perturbation flp kg m≠3 Additive [≠300, 300]
Fuel height perturbations h m Multiplicative [0.4, 1.6]13

Fuel load perturbations ‡f kg m≠2 Multiplicative [0.4, 1.6]13

Surface-volume ratio perturbations Sv m≠1 Multiplicative [0.4, 1.6]13

Scalar Inputs In the case of perturbations, the symbol corresponds to the
perturbed quantity, and the perturbation of this quantity can be either additive

or multiplicative. The range indicates the boundaries of the domain of
definition with two components for the wind and 13 components in the last

three rows (one row per fuel type).
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Scalar Output

Neural Network Construction

Simulated burned surface after one hour returned by ForeFire.
The initial firefront of 0.45 ha in black at the center

final burned surface is the surrounding shaded shape. The input wind speed
vector is represented by the arrow at the top. The simulated fire spread to the

south, was partly blocked by mountains (in gray), but still burned 1316 ha.
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Design of experiments

Mass simulation and danger

Consider the simulator as a “black-box”
Build the emulator based on a synthetic dataset of input and
corresponding output
Design of experiments (DOE) to generate the datasets
Evaluate its approximation error

large number of simulations ≥ 5.106 are required for an emulator
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Neural network architecture

Neural network architecture
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Why convolutional deep neural
networks?
Gaussian processes, polynomial
chaos, high dimensional model
reduction, radial basis functions are
interesting alternatives, however
their computational requirements
(regarding time and/or memory
space) can become prohibitory
when there are both a high
dimension (d = 46) and a large
sample size (Ø 105)
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Neural network architecture

Neural network architecture
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Representation of data processing in the neural network. The blocks indicate
the shape of the data. The 2D input is derived from the four fields of

elevation, and fuel parameters h, ‡f , and Sv . The 46 scalar inputs are derived
from the simulation parameter inputs of Table. Conv : Convolution 2D ; BN :

Batch Normalization ; AvgPool : Average Pooling 2D.
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Accuracy metrics and training strategy

Accuracy metrics and training strategy

Among a dataset of size n, u i denotes the i-th set of simulation inputs, y (u i )
the resulting output, and

≥
y (u i ) the corresponding value returned by the

emulator. We use the mean absolute error (MAE), the mean absolute
percentage error (MAPE) and the standardized mean square error SMSE :

MAE = 1
n

nÿ

i=1

|≥
y (u i ) ≠ y (u i )|, (1)

MAPE = 1
n

nÿ

i=1

----
≥
y (u i ) ≠ y (u i )

y (u i )

---- , (2)

SMSE =

q
n

i=1

!≥
y (u i ) ≠ y (u i )

"2

q
n

i=1

!
y (u i ) ≠ ȳ

"2 , (3)

where ȳ = 1
n

q
n

i=1 y (u i ) is the sample mean of the emulated function. SMSE
can be seen as a mean squared error normalized by the sample variance of
y , equal to 1 if the emulator was a constant function equal to the sample
mean ȳ . The lower these scores, the more accurate the emulator.
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Implementation

Implementation

Python scripts are used to process the data, generate the training and test
datasets, build and evaluate the DNN. Keras library, which is a high-level
neural networks API that is running on top of TensorFlow, is used for
building the DNN.
Training and accuracy evaluation of the DNN up to the retrieval of the actual
emulator are carried out on a ran on GENCI IDRIS Jean Zay computer (one
week on 4 GPU Nodes).
The computational time of the actual emulator (inference) is evaluated on a
machine with 32 CPU.
The size of the datasets are ntrain = 5 ◊ 106 and ntest = 104. Training is carried
out for 100 epochs with batches of size 400.



Introduction Neural Network Construction Design of experiments Results and discussion Conclusion

Learning

Learning Phase Over-Training
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MAE over training. The solid curve represents the MAE for the test dataset,
while the crosses represent the MAE computed for the training dataset at the
end of the first epoch and after every five epochs starting from the fifth. The
horizontal dotted line corresponds to MAE=81.5 ha.
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Performance

Performance of emulator - training

Mean Std Minimum Q1 Median Q3 Maximum
455.7 ha 782.0 ha 0.45 ha 52.6 ha 181.0 ha 517.7 ha 24 804.4 ha

TABLE – Simulated burned surface area on training dataset of size 5 ◊ 106.

Model \ Metric MAE MAPE SMSE Bias
Mean of training 461.5 ha 2139% 100.0% 0 ha
DNN after 100 epochs 44.0 ha 23.8% 1.2% ≠7.6 ha
Emulator (from DNN after 94 epochs) 45.1 ha 23.2% 1.2% ≠0.9 ha

TABLE – Model error on training dataset of size 5 ◊ 106.

Model \ Metric MAE MAPE SMSE Bias
Mean of training 461.9 ha 2266.0% 100.0% 2.2 ha
DNN after 100 epochs 81.2 ha 33.5% 6.2% ≠13.1 ha
Emulator (from DNN after 94 epochs) 81.2 ha 32.8% 6.0% ≠6.5 ha

TABLE – Model error on test dataset of size 104.
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Performance analysis

Emulated vs Simulated distributions
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Comparison over the test dataset of size 104.
(a) The solid oblique gray line corresponds to a perfect match and the dotted
lines correspond to an error by a factor of 0.5 and 2.
(b) Light gray : simulated area ; blue : emulated area. Both top and bottom
figures represent the same distributions, they share the same abscissa axis
but the bottom figure has its ordinate in log scale.
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Specific Location

Emulated vs Simulated a specific case/event
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Case of Calenzana 2017 and their emulated counterparts.
(a) The solid gray line corresponds to a perfect match and the dotted lines
correspond to an error by a factor of 0.5 and 2.
(b) Light gray : simulated area ; blue : emulated area. Both top and bottom
figures represent the same distributions, they share the same abscissa axis
but the bottom figure has its ordinate in log scale.
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Un-boxing the black-Box

Sensitivity, SHapley Additive exPlanations test
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SHAP values associated with the emulator computed for the test dataset,
using the training dataset as basis. The SHAP values corresponding to the
1024 inputs resulting from the convolutional part of the DNN are summed up
and this sum is identified as “Position” in the figure.
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Perspectives

Towards Simulated Maps
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Burned surface (in hectares) based on 1 million simulations (40 seconds on
32 CPUs). Spatial resolution 80 m; From top to bottom : burned area (ha),
altitude (m), land cover. § Computation speedup vs simulation Ø 104
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