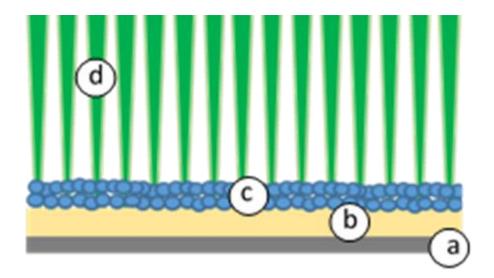


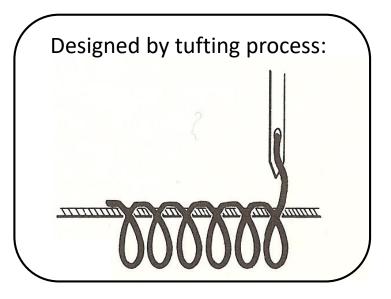
Improvement of the flame retardancy of cork by phosphorylation

Application to artificial turf structures


29^{èmes} JOURNÉES DU **GDR FEUX** **Angeline Paturel** University of Lille, France.

1st & 2nd JULY 2021

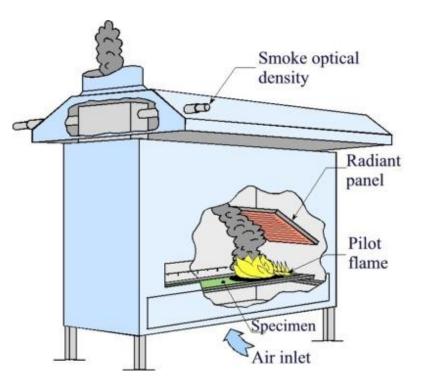
Artificial turf: Sports structures

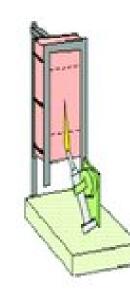

Complex and multilayered material:

a : Backing (PP)

b : Sand

- c : Performance layer (infill)
- d : Straight pile (PE)

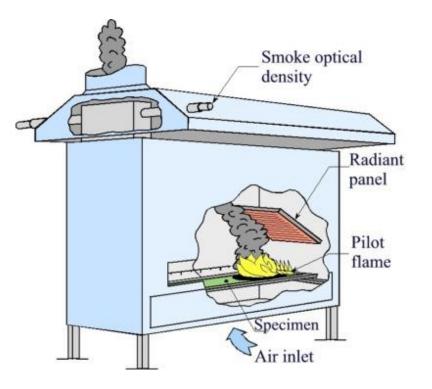



Regulations: Floorings

Evaluation of the fire behaviour of floorings:

1. Radiant panel test EN ISO 9239-1

2. Single-flame source test EN ISO 11925-2

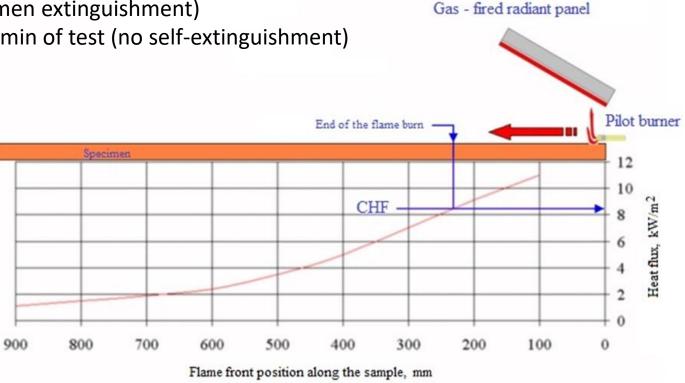

- Vertically positioned sample
- Determination of the flame height

Regulations: Floorings

Evaluation of the fire behaviour of floorings:

1. Radiant panel test EN ISO 9239-1

- Energy heat flux gradient
- Flame propagation (burnt length)
- Test duration: **30 min maximum**
- Specimen size : (1050 x 230) mm²
- Smoke density (additional requirement)



Regulations: Radiant panel test EN ISO 9239–1

GRASS

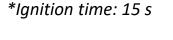
Determination of the **critical heat flux (CHF)**:

- Point where the flame stops (specimen extinguishment)
- Position of the front flame after 30 min of test (no self-extinguishment)

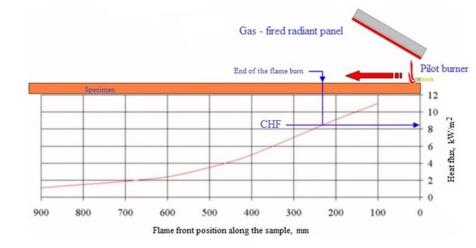
Heat flux distribution

Classifications : EN ISO 13501 – 1

Rating for floorings:


Class	Radiant panel test	Single – flame source test	Additional requirements	
	EN ISO 9239 – 1	EN ISO 11925 – 2*		
B _{FL}	$CHF \ge 8 \text{ kW/m}^2$	$Fs \leq 150 \text{ mm}$ within 20 s	Smoke ≤ 750%.min (s1)	
	$CHF \ge 4.5 \text{ kW/m}^2$	$Fs \leq 150 \text{ mm}$ within 20 s	Smoke ≤ 750%.min (s1)	
D _{FL}	$CHF \ge 3 \text{ kW/m}^2$	Fs \leq 150 mm within 20 s	Smoke ≤ 750%.min (s1)	
E _{FL} No re	No roquiromonto	$Fs \leq 150 \text{ mm}$ within 20 s	- No requirements	
E _{FL} F _{FL}	- No requirements	No requirements		

Outdoor applications

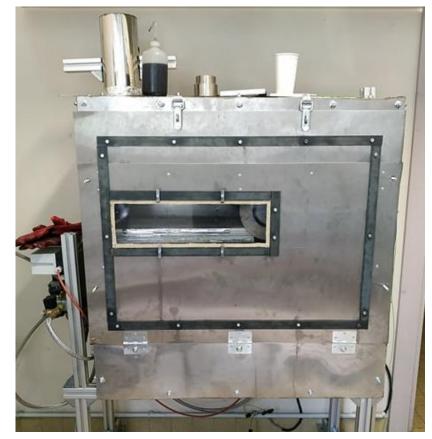

Indoor applications

For indoor applications:

Minimum C_{FL} : CHF \geq 4.5 kW/m² \rightarrow Burnt length about 420 mm max

→ Smoke rate S1 \leq 750 %.min

Regulations: Radiant panel test EN ISO 9239–1


GRASS

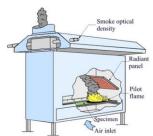
Evaluation of the fire behaviour of floorings exposed to an energy heat flux gradient

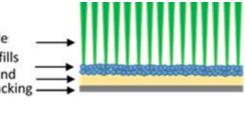
- Flame propagation (burnt length)
- Test duration: **30 min maximum**
- Specimen size: (1050 x 230) mm²
- Smoke density (additional requirement)

Reproduced at 1/3 scale:

- Faster and cheaper experiment
- Smaller sample size: (350 x 77) mm²
- Validated by testing reference samples on the standardised test*

Lab scale radiant panel test


Fire behaviour: Lab – scale radiant panel test*


GRASS

*at 1/3 scale

1. Fire retardant performance of artificial grass structures

		\frown			\frown
Recorded parameters	S – SBR	S – Cork	S – TPE	S – EPDM	S – FR EPDM
Burnt length at extinction (%)	100	54	63	51	20
Burning time	27 min 05 s	13 min 22 s	30 min	15 min 38 s	10 min 19 s
CHF (kW/m²)	0.9	2.7	1.9	3.0	9.4
Ignition time (s)	0	0	8	5	5
Class	E _{fl}	E _{fl}	E _{fl}	D _{fl}	B _{fl}

Objective:

Focus on cork-based structure:

- ECHA: Ban of microplastics under debate
- Eco-designed approach

Flame retardant EPDM:

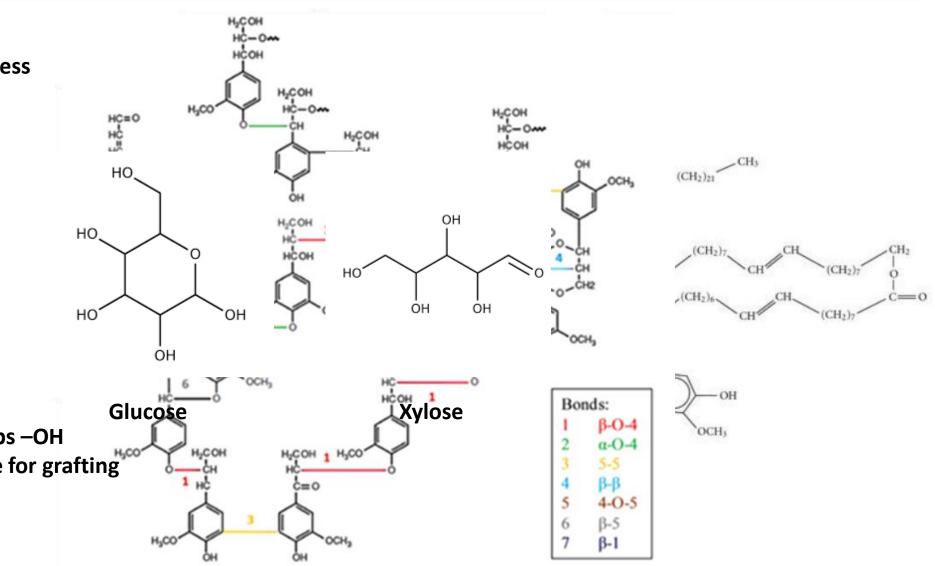
- Suitable for indoor use
- Not an environmentally friendly solution

Strategy:

egy:

Improvement of the fire behaviour of cork to meet the fire safety regulation for indoor use (CFL class).

Cork modification


GRASS

Cork composition:

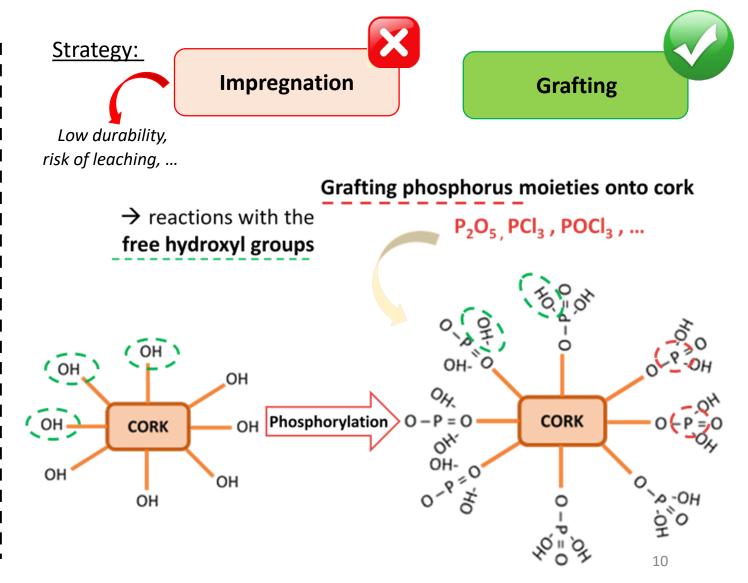
- Suberin: 42%
- Lignin: 22%
- Polysaccharides: 15%
- Extractives: 14%
- Ash: 2%

Presence of hydroxyl groups −OH →Reactive groups suitable for grafting

Cork modification

GRASS

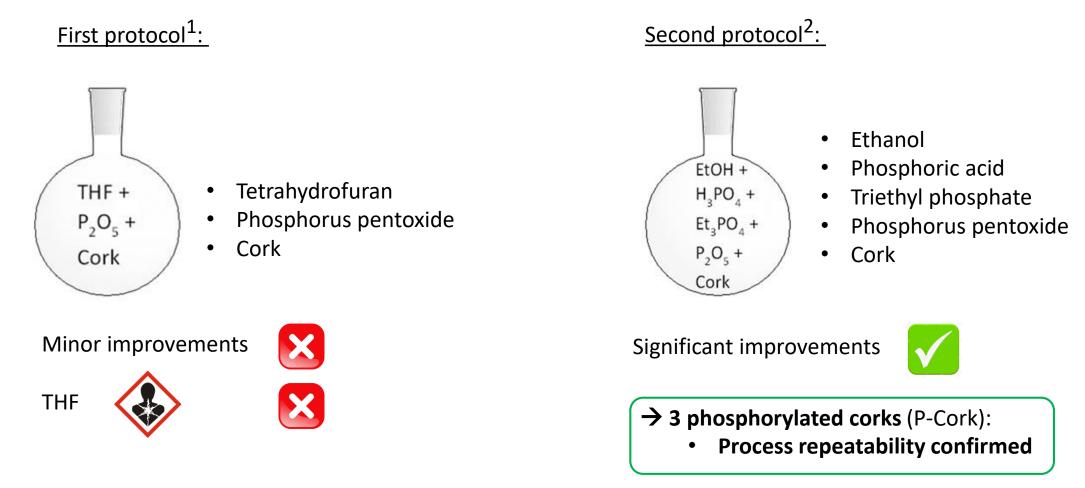
Objectives:


- Enhance the fire behaviour of cork granules
- Increase the charring phenomenon of cork

Limitation:

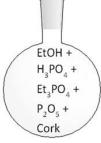
• Avoid toxic compounds, especially halogenated flame retardants

Litterature review:

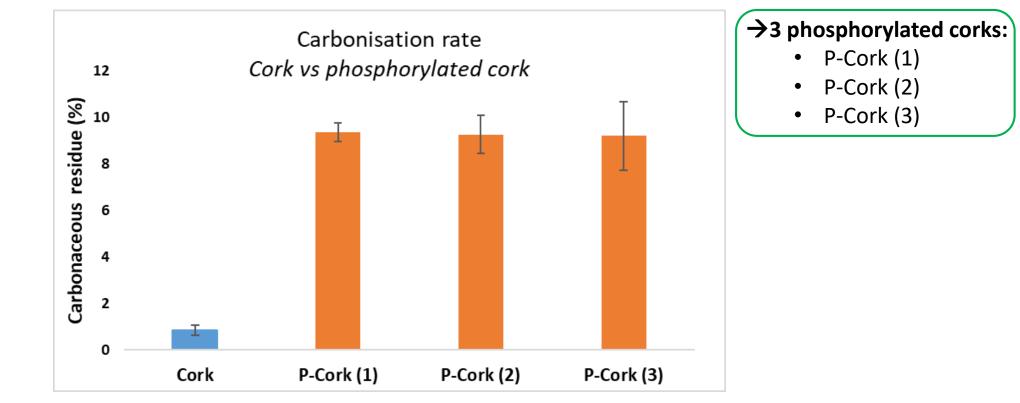

- No paper on cork flame retardancy
- Flame retardancy of lignins or cellulose through grafting of phosphorus moities demonstrating high performance

Cork modification: Phosphorylation

- GRASS
- 3. Cork phosphorylation protocol



 $\frac{1}{2}$ B Prieur et al. "Phosphorylation of lignin: characterization and investigation of the thermal decomposition", RSC Advances, 2017.


² PL Granja et al. "Cellulose Phosphates as Biomaterials. I. Synthesis and Characterization of Highly Phosphorylated Cellulose Gels", Journal of Applied Polymer Science, 2001.

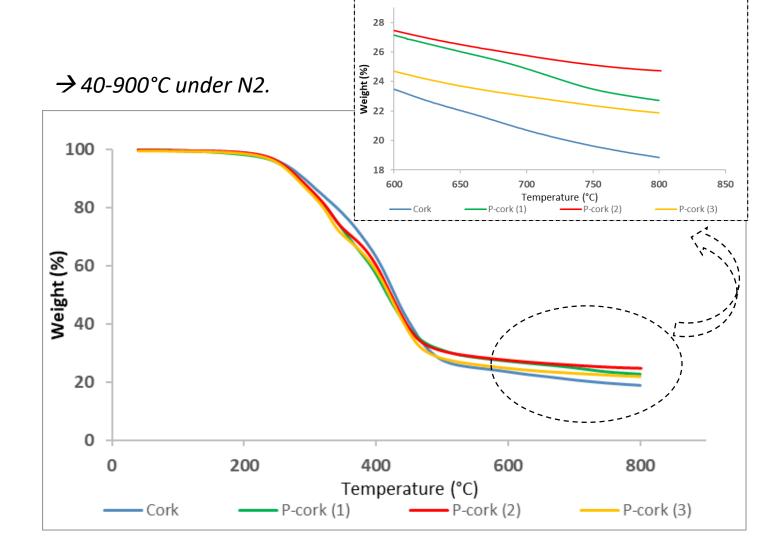
Cork modification: Characterizations

- Carbonaceous residue at 600°C (Oven)

Up to +9% of carbonaceous residue

 \rightarrow Improvement in the amount of residue

 \rightarrow Significant improvement in charring phenomenon


Thermogravimetric analysis (TGA): →Thermal Stability

Interreg

GRASS

	Carbonaceous residue (%)		
	600°C	800°C	
Cork	23.2	18.5	
P-Cork (1)	27.5	22.7	
P-Cork (2)	27.4	24.7	
P-Cork (3)	24.6	21.8	

→Improvement in thermal stability \rightarrow Improvement in the **final residual mass**

Fire behaviour: Lab – scale radiant panel test*

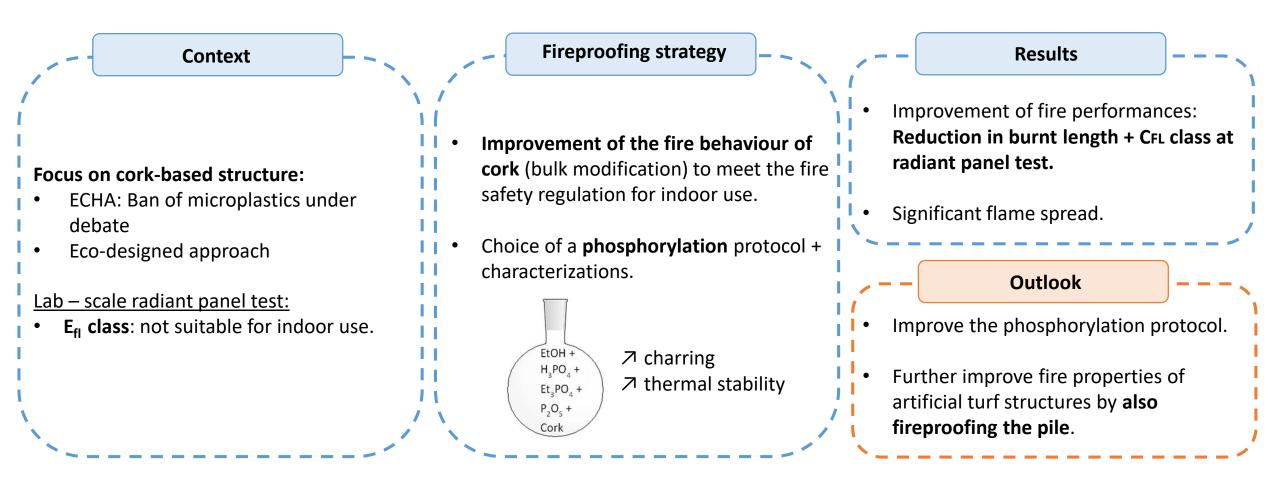
GRASS

4. Fire performance of phosphorylated cork based structure

	Recorded parameters	S – Cork	S – Phosphorylated Cork	
	Burnt length at extinction (%)	54	100 / 29	
	Burning time	13 min 22 s	10 min 23 s	
C _{fl} -s1	CHF (kW/m²)	2.7	0.9 / 7.1	
Indoor applications	Ignition time (s)	0	0	
	Class	E _{fl}	Е _{fl} / С _{fl}	
 Considering only the deeply degraded part: Significant improvement in fire performance Burns over a shorter distance in a shorter time Meeting of CFL class → suitable for indoor use 				"Flame run" at the surface

Considering the whole burnt length:

- Significant improvement in charring but significant flame spread
- No improvement in fire performance


*at 1/3 scale

B

Conclusion

GRASS

Thank you for your attention.

Do you have any questions?

29^{èmes} JOURNÉES DU **GDR FEUX**

Angeline Paturel

1st & 2nd JULY 2021

University of Lille, France.