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Introduction

▌Scenario of a Fire in forced ventilated compartment
▪ Nuclear facility application

▌Effect of the environment on the burning rate
▪ Oxygen concentration
▪ External heat fluxes

▌Use of the Well Stirred Reactor (WSR) approach to interpret the 
effect of environment
▪ Validated on simple configuration (dodecane, one room)

▌What about the performance of WSR approach for complex 
scenario ?
▪ Several rooms 
▪ Specific ventilation set-up with several branches



Content

▌Methodology and tools
▪ The Well Stirred Reactor approach
▪ Large scale fire experiments from PRISME projects

▌Results
▪ Illustration of different effects of the environment on the MLR
▪ Identification of combustion regimes and analysis of time to extinction
▪ Discussion on modelling of burning rate in vitiated environment



Well stirred reactor approach

▌Mass conservation

▌Law of burning rate dependency with oxygen (extinction mode)
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Well stirred reactor approach
▌Time variation of oxygen concentration and extinction mode

Small 𝜙𝑚

Transient only
Only extinction by lack of fuel

Larger 𝜙𝑚
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Well stirred reactor approach
▌Time to extinction

▌Two regimes
▪ Increase of text - extinction by lack of fuel
▪ Decrease of text - extinction by lack of O2

▌Transition -> Critical ventilation factor

▪ Depends on the extinction conditions

▌Special feature : two regimes only if
– ሶ𝑚𝑓
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H. Prétrel, N. Chaaraoui, B. Lafdal, and S. Suard, “Effect of environmental conditions on fire combustion regimes in 

mechanically-ventilated compartments,” Fire Saf. J., vol. 127, no. June 2021, 2022, doi: 10.1016/j.firesaf.2021.103493.



Fire experiments
▌PRISME projects (2005-2021)
▪ Various geometries

–1-> 4 rooms
–120-170m3

▪ Various ventilation
– Inlet/outlet
–Flow rate

▪ Openings
–Doorways
–vent

▪ Pool fires
–0,2-1,0 m2
–Dodecane/Heptane/HTP/Lub. oil



Fire experiments

▌Test features
▪ 24 large scale fire tests
▪ Parameters

–Scenario (-> V)
–Mass of fuel (-> φm)
–Ventilation flow rate (-> φo)

▪ Ouputs
–MLR (t) (steady/transient)
–Extinction time text

–Extinction mode (02/fuel)



Results

▌Different effects of the environment : effect of the ventilation flow rate (or ACH)

One room / HTP
Decrease of the MLR
Increase & decrease of the 
fire duration

One room /heptane
Decrease of the MLR
Increase & decrease of the fire 
duration
Oscillatory behaviour (near 𝜙𝑜

𝑐 ) 

Two rooms / HTP
Decrease of the MLR
Increase & decrease of the 
fire duration



Results
▌Three combustion regimes

R1 : Stationary – extinction by lack of fuel
R2 : Stationary – extinction by lack of O2
R3 : Transient – extinction by lack of O2

Agreement with the WSR model
Regime 2 = transition between R1 and R3
Calculation of the critical ventilation factor
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Results

▌Combustion regime
▪ Application to all campaigns

–Specific (𝑚𝑓
𝑖𝑛𝑖𝑡 , V )-> 𝜙𝑚

▪ the critical ventilation factor 
may vary between scenarios
–Specific ( ሶ𝑚𝑓

𝑒 , 𝑦𝑂2
𝑒 )

SI FES LK INT VSP1 VSP2 FES S3_3 S3_4 NYX

M
e

0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.44

Y
e

0.65 0.3 0.3 0.3 0.65 0.65 0.65 0.65 0.65 0.76

fo
c

1.11 3.43 2.28 2.28 1.11 1.11 1.11 1.11 1.11 0.51

 



Results

▌ Generalized behavior of time to extinction
▪ Three regimes
▪ Validation of the WSR model for very 

different large-scale experiments
▪ Fire duration can reach about 3 times the 

duration in open atmosphere
▪ Critical ventilation factor is a good 

indicator

Ref [13] - H. Prétrel, N. Chaaraoui, B. Lafdal, and S. Suard, 

“Effect of environmental…,” Fire Saf. J., vol. 127, 2022.
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Results

▌Burning rate versus oxygen

▌Effect of the environment

▌Include the effect of external heat fluxes
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Results

▌Classification of fire scenarios
▪ 3 parameters
–Mass factor

–Ventilation factor

–Extinction features
▪ 4 regions

–𝜙𝑚 weak: little effect of the ventilation
                              𝜙𝑜< 1 -> steady
–𝜙𝑚 significant   𝜙𝑜 = 𝜙𝑜

𝑐 -> unsteady
                             𝜙𝑜> 1 -> rapid extinction
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Conclusion
▌Effect of the environmental conditions on the burning rate from large scale PRISME project 

fire tests data base

▌Well stirred reactor (WSR) approach suited for interpreting large scale fire scenario
– Identification of the main parameters
–Dimensionless variables 

▌Three regimes
– Steady / unsteady and extinction mode

▌Ventilation factor is a robust parameter to interpret the fire scenario and the regime of 
combustion for forced ventilated compartment scenario

▌O2 vitiation has a strong effect on the burning rate, but external heat flux may have to be 
considered for some specific scenario
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