

Fraternité

Journées GDR – 7-8 Décembre 2023 - Nancy

INVESTIGATION OF THE FIRE MASS LOSS RATE IN CONFINED AND MECHANICALLY VENTILATED ENCLOSURES BASED ON LARGE SCALE UNDER-VENTILATED FIRE TESTS

Hugues Prétrel and Sylvain Suard

Institut de Radioprotection et de Sûreté Nucléaire

IRSN/FRM-25

Scenario of a Fire in forced ventilated compartment

Nuclear facility application

Effect of the environment on the burning rate

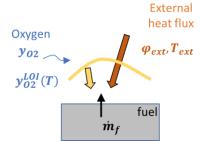
- Oxygen concentration
- External heat fluxes

Use of the Well Stirred Reactor (WSR) approach to interpret the effect of environment

Validated on simple configuration (dodecane, one room)

What about the performance of WSR approach for complex scenario ?

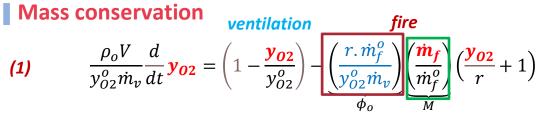
Several rooms


IRSN

Specific ventilation set-up with several branches

Content

Methodology and tools


- The Well Stirred Reactor approach
- Large scale fire experiments from PRISME projects

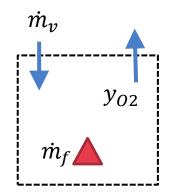
Results

- Illustration of different effects of the environment on the MLR
- Identification of combustion regimes and analysis of time to extinction
- Discussion on modelling of burning rate in vitiated environment

Well stirred reactor approach

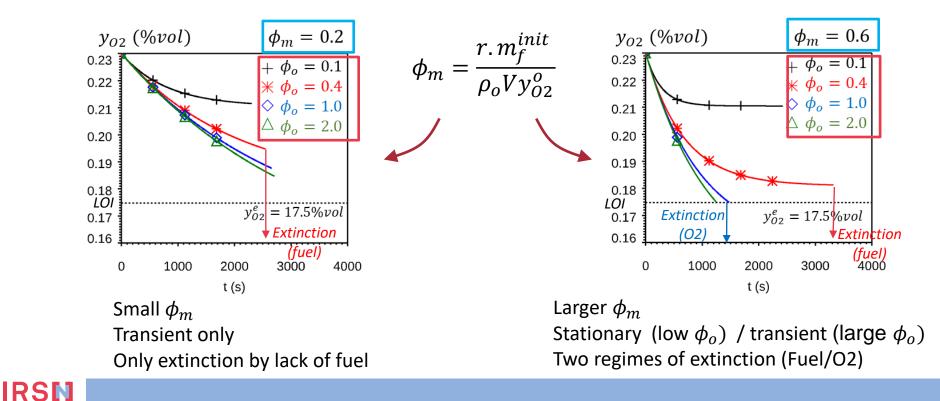
Law of burning rate dependency with oxygen (extinction mode)

(2)
$$\frac{\dot{m}_f - \dot{m}_f^e}{\dot{m}_f^o - \dot{m}_f^e} = \frac{y_{02} - y_{02}^e}{y_{02}^o - y_{02}^e}$$


IRSN

$$\phi_{o} : ventilation factor (GER) = \frac{r.\dot{m}_{f}^{o}}{y_{02}^{o}\dot{m}_{v}} = \frac{fire}{ventilation}$$

$$\phi_{m} : mass factor = \frac{r.m_{f}^{init}}{\rho_{o}Vy_{02}^{o}} = \frac{Mass of fuel}{compartment volume}$$


$$y_{02}(t) = f(\phi_{o}, \phi_{m}, extinction)$$

$$M(t)$$

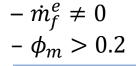
Well stirred reactor approach

Time variation of oxygen concentration and extinction mode

Well stirred reactor approach

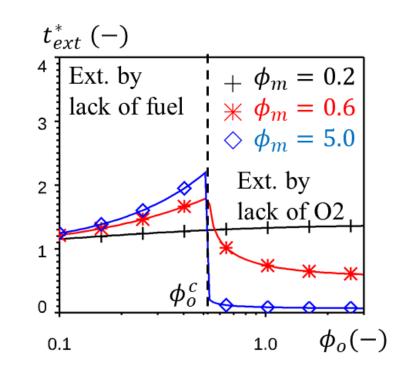
Time to extinction

$$t_{ext}^* = t_{ext} \frac{\dot{m}_f^o}{m_f^{init}}$$


Two regimes

- $\hfill \hfill \hfill$
- $\hfill \ensuremath{\,^{\circ}}$ Decrease of t_{ext} extinction by lack of O2

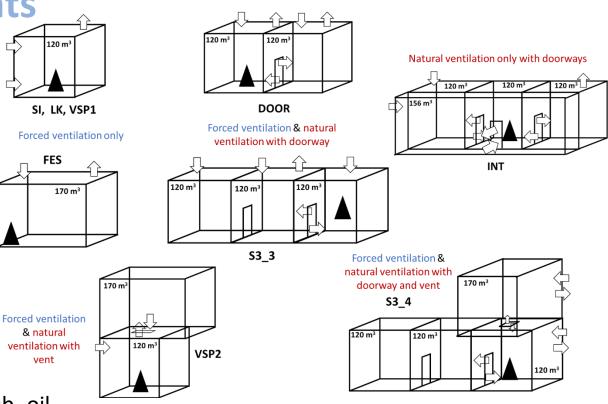
Transition -> Critical ventilation factor


 $\phi_o^c = \frac{\dot{m}_f^o}{\dot{m}_f^e} \frac{(y_{02}^o - y_{02}^e)/y_{02}^o}{(1 + y_{02}^e/r)}$ • Depends on the extinction conditions

Special feature : two regimes only if

IRSN

H. Prétrel, N. Chaaraoui, B. Lafdal, and S. Suard, "Effect of environmental conditions on fire combustion regimes in mechanically-ventilated compartments," *Fire Saf. J.*, vol. 127, no. June 2021, 2022, doi: 10.1016/j.firesaf.2021.103493.


Fire experiments

PRISME projects (2005-2021)

- Various geometries
 - -1->4 rooms
 - -120-170m³
- Various ventilation
 - -Inlet/outlet
 - -Flow rate
- Openings
 - -Doorways
 - -vent
- Pool fires

IRSN

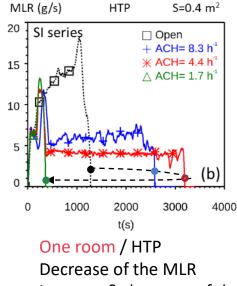
- -0,2-1,0 m2
- -Dodecane/Heptane/HTP/Lub. oil

Fire experiments

Test features

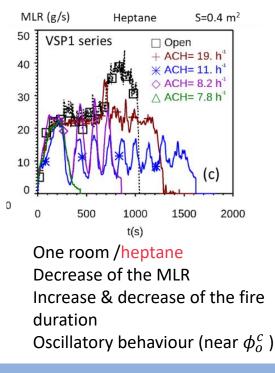
- 24 large scale fire tests
- Parameters
 - -Scenario (-> V)
 - -Mass of fuel (-> ϕ_m)
 - –Ventilation flow rate (-> ϕ_o)

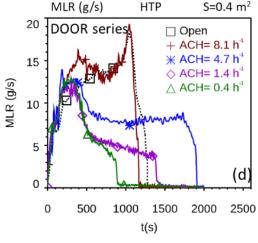
Ouputs


- -MLR (t) (steady/transient)
- -Extinction time t_{ext}
- -Extinction mode (02/fuel)

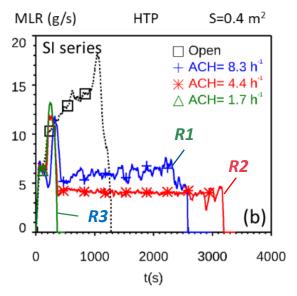
Serie	Name	Pool area	Fuel type	Number of room	Number of Doorway	Number of vent	Fire room volume	Total Volume	Ventilation flow rate	Admission position	ACH	Extinction mode	Regime	ṁ _f °	ϕ_o	ϕ_m	t _{ext}	'n _f
		(m ²)		(#)	(#)	(#)	m ³	m ³	m^3/h	(-)	(h ⁻¹)	(-)	(-)	(g/s)	(-)	(-)	(s)	(g/s)
	SI_D1	0.4	Т	1	-	-	120	120	560	Тор	4,67	O 2	R2	13,2	1,10	1,67	3190	4,04
	SI_D2	0.4	Т	1	-	-	120	120	1000	Тор	8,33	F	R1	13,2	0,59	1,64	2580	6,02
	SI_D3	0.4	Т	1	-	-	120	120	180	Тор	1,50	O 2	R3	13,2	2,84	1,67	360	12,25
SI	SI_D4	0.4	Т	1	-	-	120	120	560	Top	4,67	O 2	R2	13,2	1,03	1,65	2895	4,18
51	SI_D5	0.2	Т	1	-	-	120	120	560	Тор	4,67	F	R1	5,3	0,43	0,75	2550	3,12
	SI_D5a	0.2	Т	1	-	-	120	120	180	Тор	1,50	O 2	R2	5,3	1,15	0,82	1980	1,07
	SI_D6	0.4	Т	1	-	-	120	120	560	Bot.	4,67	O 2	R2	13,2	1,06	1,67	2500	6,40
	SI_D6a	0.4	Т	1	-	-	120	120	180	Bot.	1,50	O 2	R3	13,2	6,80	1,65	560	8,18
	DOOR1	0.4	Т	2	1	-	120	240	50	Тор	0,42	O 2	R3	13,2	11,90	1,55	885	3,74
	DOOR2	0.4	Т	2	1	-	120	240	180	Тор	1,50	O 2	R2	13,2	3,35	1,85	1410	4,83
DOOR	DOOR3	0.4	Т	2	1	-	120	240	570	Тор	4,75	F	R1	13,2	1,05	1,70	1910	7,88
	DOOR4	0.4	Т	2	1	-	120	240	1000	Тор	8,33	F	R1	13,2	0,61	1,57	1160	13,48
	DOOR5	1	Т	2	1	-	120	240	570	Тор	4,75	F	R1	40,8	3,26	1,66	1310	7,34
LK	LK_3	0.6	Т	1	-	-	120	120	1850	Тор	15,42	F	R1	21,9	0,59	1,84	1120	19,25
INT	INT_4	1	Т	4	3	-	120	516	3100	-	25,83	F	R1	40,8	0,59	5,44	1610	30,09
VSP1	VSP_1A	0.3	Н	1	-		120	120	2000	Тор	16,67	F	R1	16,2	0,38	2,17	1555	13,08
	VSP_2	0.4	Н	2	-	1	120	290	2320	Тор	19,33	F	R1	23,7	0,46	2,88	1310	22,16
VSP2	VSP_3	0.4	Η	2	-	1	120	290	960	Тор	8,00	O 2	R2	23,7	1,10	2,87	755	15,31
	VSP_4	0.4	Η	2	-	1	120	290	960	Тор	8,00	O 2	R3	23,7	1,14	2,90	335	20,11
FES	FES_1	0.7	0	1	-	-	170	170	2550	Тор	15,00	F	R1	16,3	0,29	1,86	2650	11,65
S3 3	S3_B0	0.5 <mark>6</mark>	D	3	1	-	120	360	1200	Тор	10,00	F	R1	16,8	0,62	3,90	2650	14,05
35_5	S3_C1	0.56	D	3	1	-	120	360	1200	Тор	10,00	F	R1	16,8	0,65	3,89	3470	11,22
S3_4	S3_A1	0.4	0	4	1	1	120	530	10	-	0,08	F	R1	8,4	0,75	1,76	3620	5,33
	S3_A2	1	0	4	1	1	120	530	2400	Тор	20,00	F	R1	24,5	0,49	8,85	6250	16,09

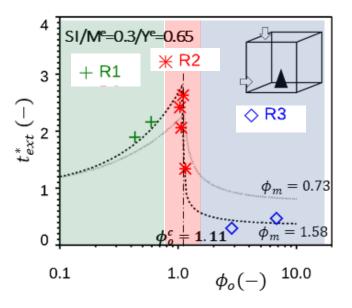
T=TPH ; H=Heptane - O=Lub.oil - D=Dodecane - O2= lack of oxygen - F=lack of fuel




Different effects of the environment : effect of the ventilation flow rate (or ACH)

IRSN

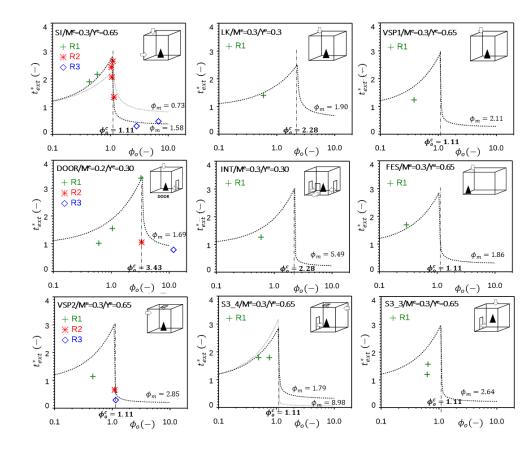

Decrease of the MLR Increase & decrease of the fire duration


Two rooms / HTP Decrease of the MLR Increase & decrease of the fire duration

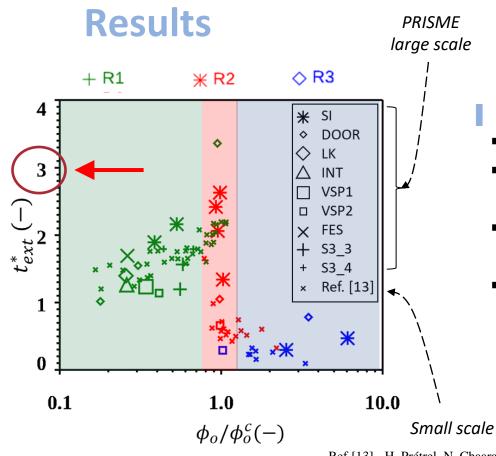
Three combustion regimes

R1 : Stationary – extinction by lack of fuel
R2 : Stationary – extinction by lack of O2
R3 : Transient – extinction by lack of O2

IRSN

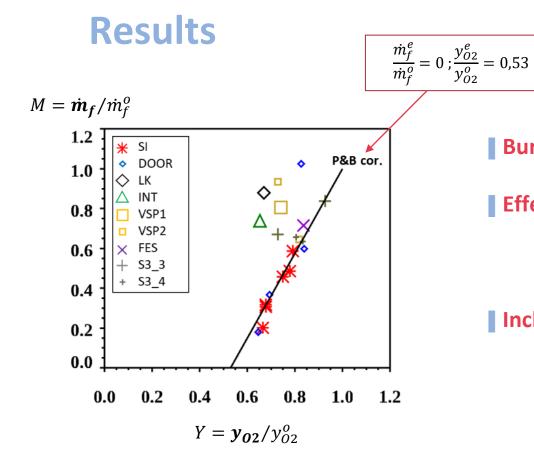

Agreement with the WSR model Regime 2 = transition between R1 and R3 Calculation of the critical ventilation factor

$$\phi_o^c = \frac{\dot{m}_f^o}{\dot{m}_f^e} \frac{(y_{02}^o - y_{02}^e)/y_{02}^o}{(1 + y_{02}^e/r)}$$


Combustion regime

- Application to all campaigns -Specific $(m_f^{init}, V) \rightarrow \phi_m$
- the critical ventilation factor may vary between scenarios –Specific (m^e_f, y^e_{O2})

	SI	FES	LK	INT	VSP1	VSP2	FES	S3_3	S3_4	NYX
M ^e	0.3	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.44
$\mathbf{Y}^{\mathbf{e}}$	0.65	0.3	0.3	0.3	0.65	0.65	0.65	0.65	0.65	0.76
ϕ_{o}^{c}	1.11	3.43	2.28	2.28	1.11	1.11	1.11	1.11	1.11	0.51



Generalized behavior of time to extinction

- Three regimes
- Validation of the WSR model for very different large-scale experiments
- Fire duration can reach about 3 times the duration in open atmosphere
- Critical ventilation factor is a good indicator

Ref [13] - H. Prétrel, N. Chaaraoui, B. Lafdal, and S. Suard, "Effect of environmental...," *Fire Saf. J.*, vol. 127, 2022.

Burning rate versus oxygen

Effect of the environment

$$\frac{\dot{m}_f - \dot{m}_f^e}{\dot{m}_f^o - \dot{m}_f^e} = \frac{y_{02} - y_{02}^e}{y_{02}^o - y_{02}^e}$$

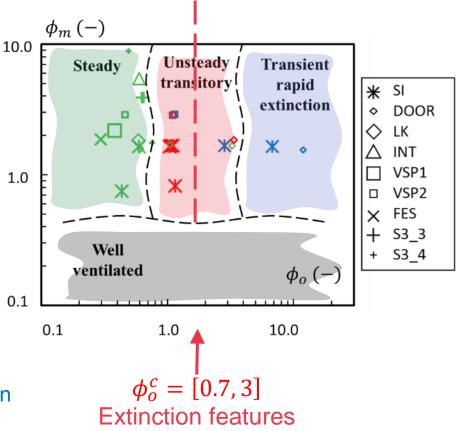
Include the effect of external heat fluxes

$$\dot{m}_{f} = \underbrace{f(y_{02})}_{vitiation} + \underbrace{g(\varphi_{ext})}_{External}_{heat}_{heat}$$

Classification of fire scenarios

- <u>3 parameters</u>
 - Mass factor

$$\phi_m = \frac{r.\,m_f^{init}}{\rho_o V y_{02}^o}$$


init

-Ventilation factor

$$\phi_o = \frac{r.\dot{m}_f^o}{y_{O2}^o \dot{m}_v}$$

- -Extinction features
- <u>4 regions</u>

 $-\phi_m \text{ weak: little effect of the ventilation } \phi_o < 1 \text{ -> steady} \\ -\phi_m \text{ significant } \phi_o = \phi_o^c \text{ -> unsteady} \\ \phi_o > 1 \text{ -> rapid extinction } \phi_o > 1 \text{ -> rapid extinction } \phi_o < 0 \text{ -> unsteady} \\ \phi_o > 1 \text{ -> rapid extinction } \phi_o < 0 \text{ -> unsteady} \\ \phi_o > 1 \text{ -> rapid extinction } \phi_o < 0 \text{ -> unsteady} \\ \phi_o > 1 \text{ -> rapid extinction } \phi_o < 0 \text{ -> unsteady} \\ \phi_o > 1 \text{ -> rapid extinction } \phi_o < 0 \text{ -> unsteady} \\ \phi_o > 1 \text{ -> rapid extinction } \phi_o < 0 \text{ -> unsteady} \\ \phi_o > 1 \text{ -> rapid extinction } \phi_o < 0 \text{ -> unsteady} \\ \phi_o > 1 \text{ -> rapid extinction } \phi_o < 0 \text{ -> unsteady} \\ \phi_o > 1 \text{ -> rapid extinction } \phi_o < 0 \text{ -> unsteady} \\ \phi_o > 1 \text{ -> rapid extinction } \phi_o < 0 \text{ -> unsteady} \\ \phi_o > 1 \text{ -> rapid extinction } \phi_o < 0 \text{ -> unsteady} \\ \phi_o > 1 \text{ -> rapid extinction } \phi_o < 0 \text{ -> unsteady} \\ \phi_o > 1 \text{ -> rapid extinction } \phi_o < 0 \text{ -> unsteady} \\ \phi_o > 1 \text{ -> rapid extinction } \phi_o < 0 \text{ -> unsteady} \\ \phi_o > 0 \text{ -> unsteady} \\ \phi_o = 0 \text{ -> unstea$

Conclusion

Effect of the environmental conditions on the burning rate from large scale PRISME project fire tests data base

Well stirred reactor (WSR) approach suited for interpreting large scale fire scenario

- Identification of the main parameters
- Dimensionless variables

Three regimes

-Steady / unsteady and extinction mode

Ventilation factor is a robust parameter to interpret the fire scenario and the regime of combustion for forced ventilated compartment scenario

O2 vitiation has a strong effect on the burning rate, but external heat flux may have to be considered for some specific scenario

