

Fire behavior and fireproofing of building facade elements – Multi-scale study

Comportement au feu et ignifugation d'éléments de façade pour le bâtiment – Étude multi-échelle

Mingwei TANG

Tuteur: Serge BOURBIGOT Cotuteur: Thomas ROGAUME Cotuteur: Benjamin BATIOT Cotutrice: Tsilla BENSABATH

Project

• ANR project FRENETICS (Fire REsistaNce of External Thermal Insulation Composite Systems)

TANG Mingwei

UMET- University of Lille

BOURBIGOT Serge

BENSABATH-PEREZ Tsilla

Pprime – University of Poitier

ROGAUME Thomas

BATIOT Benjamin

Université de Lille

CATALOGUE

- Context
- ETIC System
- Test in lab-scale
- Test using test bench in small scale
- Test using test bench in intermediate scale
- Full-scale test
- Conclusion

* https://www.seas.ucla.edu/~pilon/PCMIntro.html

ETIC System Components

Category	Component Description		
I. Wall structure (substrate)	Panel consisting of a cement core lightened by EPS beads		
2. Adhesive	Cement-based adhesives modified with redispersible polymers, fibers, and mineral fillers		
3. Insulation	Prefabricated EPS board		
4. Anchor	If necessary, additional fixing		
5. Reinforcement layer	Base coat with glass fiber mesh embedded		
5. Key coating	If necessary		
7. Finishing coat	Mineral render/ Acrylic render/ Silicone render/ Silicone-silicate render		
3. Primers	Optional		
9. Decorative coats	Optional		

Expanded Polystyrene

EPS

Combustible

In lab-scale

Investigation of thermal decomposition of ETI

STA (TGA+DSC)

Fig.1 TGA/DSC curves of EPS in 10K/min in N2

In small scale

• A test bench, with a horizontal and rotational motion, is developed to study the fire-facade interaction under controlled heat condition.

• Temperature monitoring

Thermal couple

IR Camera

• Intensity of heat flow -0° , 10cm

Fig.4 Intensity distribution of heat flow -0° , 10cm

Fig.5 Intensity contrast of heat flow – 0° and 45°

• ETI STO -0° , 10cm, 43.2 kW/m²

350

Ignition observed Initial mass: 294.23g (EPS 31.80g) Mass after test: 265.54g -28.69g

Fig.6 Temperature changes of ETI STO

(° C)

Temperature

Results

• ETI FlameOFF – 0° , 10cm, 43.2 kW/m²

FlameOFF		
Finishing coating		
Base Coating		
EPS		
Cement board		

■ ETI EG – 0°,10cm, 43.2 kW/m²

Finishing coating + Graphite			
Base coating			
EPS			
Cement board			

Component	Finishing coat STO	EG	Clay	Water
Concentration (Masse)	70%	6% => 8%	4% =>5%	20% 60
	a	b		50
				() • 40 •
		and the second s		06 00
		1. ST. M		Lie 20
				10
Fig 10	a) Enduit fin	ition STO: b) Endu	it modifié	

Fig.8 Temperature changes of ETI EG

In intermediate – scale

• Conducting several intermediate-scale test in using the bench of *Pprime*

Fig.10 Intensity distribution of heat flow

Fig.9 Test bench of *Pprime* and a sketch

Surface Temperature

When the surface temperature reaches 425°C, EPS melts quickly in ETI STO, indicating that the majority of heat passes through the coating. FlameOFF or EG forms a char layer that effectively block heat transfer.

Results

Mass Loss

Fig.14 Mass loss of facade

The char layer formed by EG is scattered and unstable, prone to falling or dispersing with airflow, leading to a decrease in protection.

Full-scale test

• Conducting full-scale trials with fire retardant treatment proposal (expandable graphite), in cooperation with *Efectis*

Typical Case 2 Scenario: Compartment Fire with Flame Exit

- 9 TC in room
- 6 TC facade (3 per ½ façade)
- 8 PT (4 per ½ façade)

Infrared camera

Caméra	FLIR X6540sc
Image Format	640*512
Input Power	24V
Housing Colling system	Forced convection external cycle
Pitch	15µm
Band	1.5-5.1µm
Lenses	25mm
Filtre	NA-3970-60 %

Emissivité	0.6
Distance (m)	14
Reflected temperature (°C)	20
Temps d'allumage	10h53min04s

 Intensity of heat flow (2 PTs + heat flow meter 3m from façade)

Surface Temperature

Result of TP Efectis

Result of IR camera

- First floor roof Temperature
- Similiar R/L on mid-thickness insulator
- Similiar R/L on ³⁄₄ thickness insulator

B : TC à ¾ épaisseur de l'isolant, soit 350mm de la face inférieure de la façade

• Right facade: Visible water evaporation for 4 min

Second floor bottom Temperature

- Higher temperature on left mid-thickness insulator
- Higher temperature on left ³/₄ thickness insulator

A : TC à mi-épaisseur de l'isolant, soit 300mm de la face inférieure de la façade B : TC à ¼ épaisseur de l'isolant, soit 350mm de la face inférieure de la façade

- Second floor windows Temperature
- Higher temperature on the right

800

_

Results

- Second floor roof Temperature
- Higher temperature on left mid-thickness insulator
- Higher temperature on left ³/₄ thickness insulator

Similiar R/L on mid-thickness insulator Similiar R/L on ³⁄₄ thickness insulator

B : TC à ¾ épaisseur de l'isolant, soit 350mm de la face inférieure de la façade

Comment

Ignition of the coating occurs at 6 min, on both sides, spanning from the ground floor window to that of the 2^{nd} floor.

When EG is exposed to heat, it generates a loose char layer. The resulting char chips disperse with the airflow produced by the flame, preventing the attainment of intumescence.

EG restricts heat propagation in the cross-sectional direction, but there is an increase in heat propagation in the vertical direction.

Conclusions

- The initial coating is ineffective in blocking heat transfer. When the temperature reaches approximately 425°C, EPS insulation rapidly melt or ignite.
- In small and intermediate scale tests, EG demonstrates effective heat transfer restriction, similar to FlameOFF, but reveals weaknesses in mechanical properties.
- These drawbacks become more pronounced in full-scale tests, particularly with regard to airflow influence. Nevertheless, EG continues to play a certain role in heat insulation

Université de Lille

THANK YOU Q & A

