# optimisation des paramètres de dégradation thermique des matériaux à partir d'essais de perte de masse au cône calorimètre

A.Coppalle, M. Mrad

CNRS UMR 6614 - CORIA, 76801 BP-12, Saint Etienne du Rouvray,

#### Points abordés:

- Optimisation
- THERMAKIN: détails
- Résultats: -PMMA
  - un composite
- Conclusion



# La pyrolyse: un challenge pour la modélisation

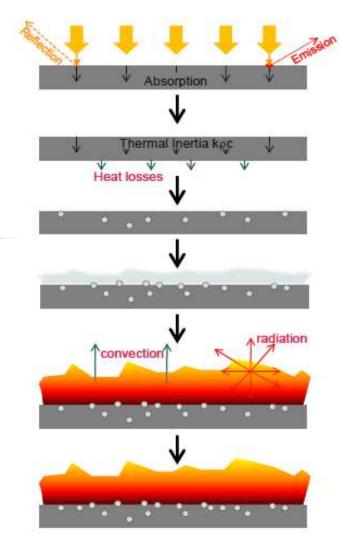



Table 2.3: Ranges of variability extracted from the literature for the main input parameters of pyrolysis models applied to PMMA samples.

| Parameter                                      | Range                             |                          |                                         |
|------------------------------------------------|-----------------------------------|--------------------------|-----------------------------------------|
| Thermal conductivity                           | k                                 | [W/(m.K)]                | [0.13; 0.27]                            |
| Specific heat                                  | С                                 | [J/(kg.K)]               | [1200; 3050]                            |
| Density                                        | ρ                                 | $[kg/m^3]$               | [1000; 1220]                            |
| Effective attenuation coefficient (black PMMA) | $\bar{\kappa}$                    | [m·1]                    | [333;5340]                              |
| Surface temperature at ignition                | $T_{s ign}$                       | [K]                      | [523;673]                               |
| Mass flux at ignition                          | $\dot{m}_{F\;ign}^{\prime\prime}$ | $[g/(m^2.s)]$            | [1.00; 5.6]                             |
| Heat transfer coefficient                      | Н                                 | $\left[W/(m^2.K)\right]$ | [3.5;34]                                |
| Activation energy                              | $E_a$                             | [kJ/mol]                 | [31; 290]                               |
| Pre-exponential factor                         | A                                 | $[s^{\cdot 1}]$          | $[1.1 \cdot 10^0 ; 4.50 \cdot 10^{23}]$ |
| Order of reaction                              | n                                 | [·]                      | [0.5; 2.2]                              |
| Reflectivity coefficient                       | г                                 | [•]                      | [0; 0.15]                               |
| Heat flux                                      | $\dot{q}_e^{\prime\prime}$        | $[kW/m^2]$               | [-13 % ; +3 %]                          |
| Heat of pyrolysis                              | $\Delta H_p$                      | [kJ/g]                   | [0.42; 1.007]                           |

Thèse N. Bal 2009



# **Optimisation des paramètres ?** *Méthode générale:*

- Définir une fonction cout fonction des paramètres X

Ex : avec la perte de masse PM au cours d'un essai au cone calorimètre  $f(x) = \sum_{max} (PM^{al}(x,t_i) - PM^{mes}(t_i))^2$ 

- Modéliser les valeurs de la fonction cout (PM<sup>cal</sup>(X,t)) (Quel modèle ? En générale 1D pour des raisons de temps CPU)

- Minimiser cette fonction cout (quelle méthode ?)

#### Intérêts et avantages:

- Déterminer les paramètres X nécessaires au modèle
  - Validation sur les valeurs expérimentales disponibles
- Faire des analyses de sensibilité (paramètres les plus influents)
- mieux comprendre les phénomènes
- Inconvénients: La qualité des résultats liée aux faiblesses du modèle

Modèle 1D: La phase gaz et les interactions flamme-solide non modélisées Paramétrisation des flux de masse et d'énergie à la surface

- Sens physique des paramètres optimisés ?

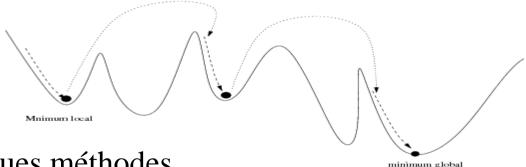
fort/faible, juste des paramètres efficaces pour la modélisation?

- Optimisation difficile:

Minimum locaux nombreux, effet de compensation entre les paramètres X

# Optimisation des paramètres?

## Quel algorithme d'optimisation?


➤ Minimisation de la fonction cout

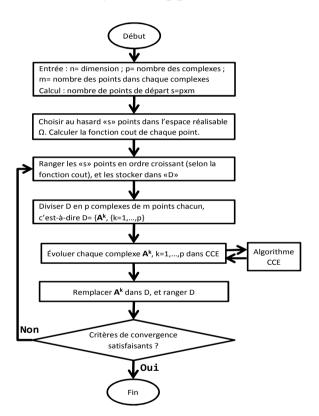
===> Critère de convergence

Or tout algorithme nécessite des choix (espace réalisable, initialisation, ... Pourcentage élevé de succès ?

Rapidité de convergence? (Rappel: le cout CPU du modèle 1D)

➤ Eviter les solutions locales et rechercher les solutions globales.




- ➤ Quelques méthodes
  - algorithme génétique
  - 'stochastic hill-climber'
  - Suffled Complex Evolution (Duan, J. Optimization Theory and Appl., 1993)



# Optimisation des paramètres?

- Méthode 'Suffled Complex Evolution' (SCE)

(Duan, J. Optimization Theory and Appl., 1993)



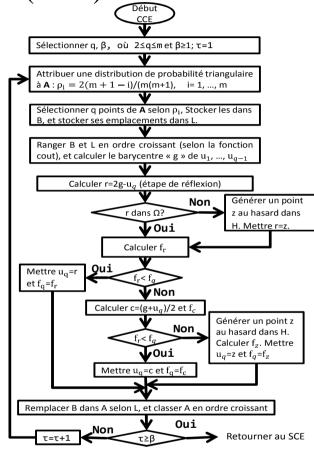



Schéma simplifié de l'algorithme (SCE à gauche)

associé à la méthode 'Compétitive Complexe Evolution (CCE à droite).



## THERMAKIN: détails (stoliarov, comb & flame 2009)

#### ➤ Modélisation 1D du matériau soumis à un flux thermique

$$\sum_{j}^{N} Y_{i} C_{P,i} \frac{\partial T}{\partial t} = H_{L} R + \sum_{j}^{N} \lambda_{i} \frac{\partial^{2} T}{\partial x^{2}} - \frac{\partial q_{r}}{\partial x}$$
$$\frac{\partial Y_{i}}{\partial t} = (-1)^{i} R + D_{i} \frac{\partial^{2} Y_{i}}{\partial x^{2}}$$

- ➤ un pas de temps de 10<sup>-2</sup> s et un pas en espace de 50 10<sup>-5</sup> m sont suffisants
- ➤ une réaction unique pour transformer la matière solide en phase gazeuse.

Le taux de réaction est du 1<sup>er</sup> ordre  $R = -Y_g k = Ae^{-E/RT}$ 

➤ Les conditions limites à la surface exposée:  $\Phi_g = a_g Y_g^p$ 

$$\Phi_{recu} = h_c (T^p - T^{amb}) + \Phi_{recu}^{ext} + \Phi_{recu}^{flamme}$$

#### **Résultats: PMMA**

\*matériau homogène :

si propriétés indépendantes de la TP: 14 parametres!

DENSITY: P EMISSIVITY and ABSORPTION:

**HEAT CAPACITY**: c SWELLING:  $\gamma_s$  (= 0 without, =1 full effect)

CONDUCTIVITY: k

TRANSPORT: Dg

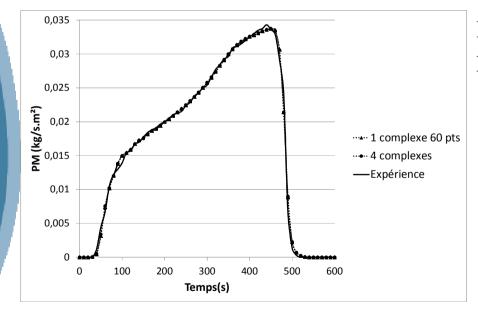
Arrhenius law: A & E  $\Delta h_L$ 

Heat of combustion:  $\Delta h_{comb}$  (pour la conversion MLR<-> HHR)

\*matériau homogène :

si propriétés fonction de la TP: P=a+bT

14 + 9 = 23 parametres!


\*Autre paramètre sensible  $\Phi^{flamme}_{recu}$ 23+1= 24 parametres!



## Résultats: PMMA, 50kW/m2

## \*réduction du problème:

- propriétés indépendantes de la TP:  $\rho_s$   $c_{p,s}$   $\lambda s$
- Prop gaz fixées ( $D_g=10^{-5}$  (SI))
- -Optimisation de la perte de masse: Δh<sub>comb</sub> pas nécessaire
- Emissivité et absorption de la surface fixées
- $\Phi_{recu}^{flamme}$  fixé à 10 kW/m2 E A  $H_L$



Excellent accord entre PM calculée et mesurée, pas de différence avec les deux jeux de paramètres

6 parametres!

Perte de masse (Kg/s/m²) du PMMA en fonction du temps, soumis à un flux de 50kW/m², valeurs expérimentales et théoriques. Deux choix d'optimisation, avec un seul (avec 60pt) ou 4 complexes (2100-2400 itérations)

#### Résultats: PMMA, 50kW/m2

valeurs optimisées des 6 paramètres

|              | $ ho_{ m S}$       | $C_{s}$ | $\lambda_{ m s}$ | Е                     | A        | $H_{L}$             |  |
|--------------|--------------------|---------|------------------|-----------------------|----------|---------------------|--|
|              | kg.m <sup>-3</sup> | J/Kg    | W/m/K            | kJ.mole <sup>-1</sup> | s-1      | kJ.kg <sup>-1</sup> |  |
| 60 pts       | 1,18 E3            | 1,60 E3 | 0,23             | 207,8                 | 8,60 E12 | 1,02 E3             |  |
| 4 complexes  | 1,18 E3            | 1,43 E3 | 0,21             | 214,2                 | 8,59 E12 | 0,96 E3             |  |
| Val. exp [*] | 1,11 E3            | 2,13 E3 | 0,19             | 188,0                 | 8,6 E12  | 0,85 E3             |  |

([\*] Stoliarov, comb & flame 2009 et 2013)

- les valeurs obtenues avec les deux choix d'optimisation sont très proches.
- ➤ Bon accord aussi avec les valeurs expérimentales, sauf pour Cs

## Résultats: PMMA, 50kW/m2

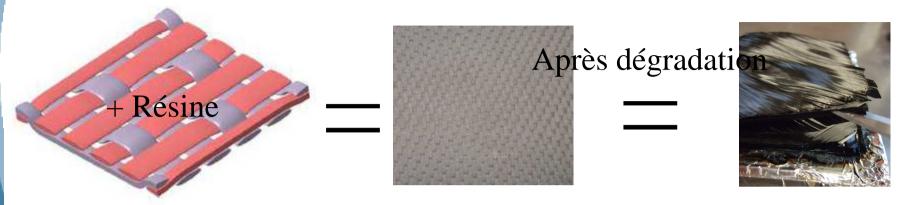
 $\rho_{s}$   $c_{p,s}$   $\lambda s$  E A  $H_{L}$ 

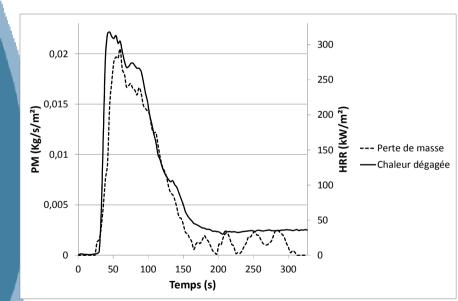
- -Optimisation de la perte de masse:  $\Delta h_{comb}$  pas nécessaire
- Emissivité et absorption de la surface fixées
- $\Phi_{recu}^{flamme} \Gamma \times 2 10 \text{ kW/m}^2$

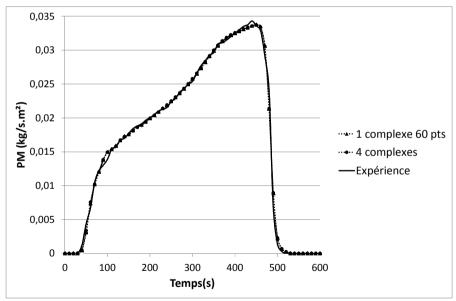
6+1 parametres!

===>Même excellent accord que précédemment entre PM calculée et mesurée

valeurs optimisées pour 7 paramètres


|              | $ ho_{ m S}$       | $C_{s}$ | $\lambda_{ m s}$ | E                     | A        | $H_L$               | $\Phi_{\it recu}^{\it flamme}$ |  |
|--------------|--------------------|---------|------------------|-----------------------|----------|---------------------|--------------------------------|--|
|              | kg.m <sup>-3</sup> | J/Kg    | W/m/K            | kJ.mole <sup>-1</sup> | s-1      | kJ.kg <sup>-1</sup> | Kw/m2                          |  |
| 75 pts       | 1,18 23            | 1,46 E3 | 0,22             | 211,0                 | 8.91 E12 | 0,94 E3             | 9,88                           |  |
| 5 complexes  | 1,18 E3            | 1,50 E3 | 0,22             | 207,8                 | 6,98 E12 | 0,96 H3             | 9,79                           |  |
| Val. exp [*] | 1,11 13            | 2,13 E3 | 0,19             | 188,0                 | 8,6 E12  | 0,85 E3             | Non disp.                      |  |


valeurs optimisées pour 6 paramètres


|              | $ ho_{ m S}$       | $C_{\rm s}$ | $\lambda_{ m s}$ | Е                     | A        | $H_L$               | $\Phi_{ m \it recu}^{ m \it flamme}$ |  |
|--------------|--------------------|-------------|------------------|-----------------------|----------|---------------------|--------------------------------------|--|
|              | kg.m <sup>-3</sup> | J/Kg        | W/m/K            | kJ.mole <sup>-1</sup> | s-1      | kJ.kg <sup>-1</sup> | kW/m2                                |  |
| 60 pts       | 1,18 E3            | 1,60 E3     | 0,23             | 207,8                 | 8,60 E12 | 1,02 E3             | Fixé 10                              |  |
| 4 complexes  | 1,18 E3            | 1,43 E3     | 0,21             | 214,2                 | 8,59 E12 | 0,96 E3             | Fixé 10                              |  |
| Val. exp [*] | 1,11 E3            | 2,13 E3     | 0,19             | 188,0                 | 8,6 E12  | 0,85 E3             | Non<br>disp                          |  |



## Résultats: un composite (fibres carbones, 70kW/m2)







Perte de masse (Kg/s/m2) et chaleur dégagée (kW), mesurées lors d'un essai avec le composite AcF2 soumis à un flux de 70kW/m2

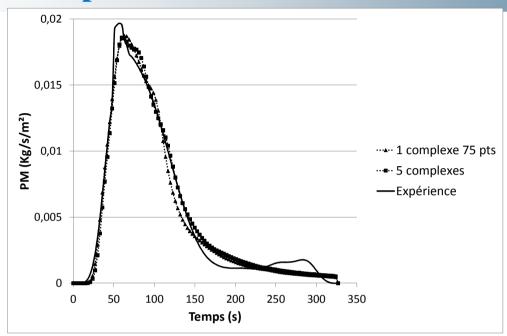
Cas du PMMA

## Résultats: un composite (fibres carbones, 70kW/m2)

#### Réduction du problème

➤ Le matériau est inhomogène,

ses propriétés thermiques sont déterminées grâce à des lois de mélange.


$$\frac{1}{\rho_{m}} = \frac{Y_{f}}{\rho_{f}} + \frac{Y_{r}}{\rho_{r}}; \ \frac{1}{\lambda_{m}} = \frac{V_{f}}{\lambda_{f}} + \frac{V_{r}}{\lambda_{r}} \ et \ c_{p,m} = Y_{f}c_{p,f} + Y_{r}c_{p,r}$$

- ➤ Pour la conductivité thermique, la relation correspond au cas où les couches de fibre sont perpendiculaires au flux.
- $\blacktriangleright$  La concentration massique de la résine est supposée égale à  $Y_r = 30\%$ .
- Les propriétés des fibres sont supposées connues, et prises égales

$$\rho_f = 1800, c_{p,f} = 921 \text{ et } \lambda_f = 15 \text{ (SI)}$$

 $ightharpoonup 
ho_r$   $c_{p,r}$   $\lambda_r$  E A  $H_L$   $\Phi_{recu}^{flamme}$  7 parametres!

## Résultats: un composite (fibres carbones, 70kW/m2)



Perte de masse (Kg/s/m2) du composite AcF2 soumis à un flux de 70kW/m2, valeurs expérimentales et optimisées.

|               | $\rho_{\mathrm{r}}$ | $C_{r}$ | $\lambda_{ m r}$ | E                     | A        | $H_{L}$             | $\Phi_{\it recu}^{\it flamme}$ |
|---------------|---------------------|---------|------------------|-----------------------|----------|---------------------|--------------------------------|
|               | kg.m <sup>-3</sup>  | J/Kg    | W/m/K            | kJ.mole <sup>-1</sup> | s-1      | kJ.kg <sup>-1</sup> | Kw/m2                          |
| 75 pts        | 1,04 E3             | 2,19 E3 | 0,66             | 118,2                 | 4,02 E12 | 0,297 E3            | 25,0                           |
| 5 complexes   | 1,13 E3             | 2,09 E3 | 0,64             | 118,0                 | 5,42 E12 | 0,292 E3            | 22,5                           |
| Val. exp [10] | 1,18 E3             | 1,89 E3 | 0,51             | 169,9                 | 0,21 E12 | Non disp            | Non disp                       |

#### **Conclusion**

- ➤ La méthode d'optimisation « Shuffled Complexe Evolution » donne de bons résultats pour un polymère homogène, le PMMA.
- Son application à un matériau composite donne aussi des bons résultats pour les paramètres physiques du matériau, mais reste à améliorer la détermination de la cinétique de la dégradation.

#### **Discussion**

Objectif de l'optimisation des paramètres de dégradation thermique:

déterminer les paramètres du modèle utilisé!

Autre modèle===> autres paramètres

Quels paramètres doivent être optimisés?

-ceux qui ne sont pas accessibles à la mesure?

Ex: Les variations avec T

-Ceux qui sont mesurables ? ===> validation / mesure

➤ La perte de masse est elle le seul critère possible ?

Température à la surface exposée? à la surface non exposée?

➤ Comment définir mathématiquement les couplages dans l'optimisation?