NSTITU Développement d'une méthodologie prédictive de la dégradation thermique de matériaux solides en tunnels routiers Journées du Groupe de Recherche Feux Niort 23-24 janvier F. Hermouet – T. Rogaume – E. Guillaume

F. Richard – X. Ponticq

Institut P' • UPR CNRS 3346 ENSMA• Téléport 2 BP 40109 F86961 FUTUROSCOPE CHASSENEUIL Cedex

Problématique

- Les modèles de simulation des incendies en tunnel sont
 - ✓ Exprimés en fonction du seul paramètre HRR
 - Basés sur des observations et estimations empiriques
 - Très simplifiés (trois phases : montée en puissance, stagnation, déclin)

Problématique

- Le CETU souhaite mieux comprendre les phénomènes concourants au développement du feu
 - ✓ Notamment dans la phase de montée en puissance généralement standardisée avec des lois αt²
- En pratique, les conditions de développement d'un incendie sont
 - Dépendantes des matériaux impliqués et des conditions environnantes
 - Très majoritairement, les matériaux impliqués proviennent des véhicules et biens transportés, transitant dans les infrastructures
- Les incendies de tunnels sont donc
 - ✓ En lien étroit avec la dégradation thermique des matériaux
 - > Exprimée par le paramètre de vitesse de perte de masse (MLR)

Problématique

- Pour évaluer la dégradation thermique
 - Nécessité de prendre en compte nombre de facteurs :

> Etc.

 Vécessité de choisir un dispositif expérimental adapté permettant de faire varier ces deux paramètres sur une gamme représentative des feux en tunnel.

> Cône calorimètre à atmosphère contrôlée

- ✓ Evolution du flux de chaleur et de la concentration d'oxygène
- Evaluation de nombreux paramètres liés à la dégradation
 - Temps d'ignition, perte de masse, vitesse de perte de masse, émissions gazeuses, taux de dégagement de chaleur (HRR), etc.
- Description de la cinétique de dégradation des matériaux solides

ISTITU

Figure 1 : schéma du cône calorimètre à atmosphère contrôlée

5

INTITU

Méthodologie

- A partir des résultats d'essais sur une large gamme de concentrations d'oxygène (0, 5, 10, 15, 21 %vol) et de flux radiants (20, 35, 50 kW.m⁻²)
 - Représentation surfacique de la réponse de différents paramètres

- > A partir de la représentation surfacique
 - Création d'un modèle numérique basé sur l'utilisation d'une régression linéaire multiple (modèles polynomiaux)

$$y = a_0 + \sum_{i=1}^{N} a_i x_i + \sum_{i=1}^{N} a_{ii} x_i^2 + \sum_{i\neq j}^{N} a_{ij} x_i x_j + \dots + \sum_{i\neq j\neq k}^{N} a_{ijk} x_i x_j x_k + a_{i\dots N} x_i \dots x_N \quad (Eq1)$$

- ✓ Avec :
 - > Y : la réponse du paramètre souhaitée
 - > a_i : les coefficients du polynôme
 - > x_i : les facteurs du polynôme (en l'occurrence deux facteurs) :
 - \rightarrow x₁ : le flux imposé
 - x₂ : la concentration d'oxygène

- > Le modèle permet d'obtenir une surface numérique
 - ✓ Illustrant la réponse du paramètre choisi en fonction des conditions d'essais

Figure 3 : Représentation surfacique numérique de la SMLR moyenne (1800s) d'une mousse Polyisocyanurate sur un large domaine de flux et de concentration d'oxygène

- Le calcul des coefficients du modèle permet de déterminer
 - ✓ La réponse du paramètre choisi (temps d'ignition, perte de masse, vitesse de perte de masse, émissions gazeuses, HRR)
 - Pour les points expérimentaux qui on servi de base à la construction du modèle pour effectuer une comparaison
 - > Pour n'importe quel autre point du domaine
- > Une surface peut être élaborée
 - Pour un paramètre moyenné sur la durée de l'essai (1800s)
 - Yeour un pas de temps spécifique de l'essai (pas de 5s)

 En utilisant cette méthodologie il est donc possible d'intégrer le paramètre d'évolution temporelle de la réponse

Figure 6 : Evolution temporelle de la réponse de la SMLR d'une mousse Polyisocyanurate sur un large domaine de flux et de concentration d'oxygène (Pas de temps de 5s, durée d'essai de 1800s : 360 surfaces)

- Connaissant la réponse du paramètre spécifié
 - ✓ Pour chaque pas de temps de l'essai
 - Quel que soit le point étudié sur le domaine
- > Il est possible de retrouver les courbes
 - Expérimentales ayant servi de référence
 - Numériques prédictives

STITU

NSTITUT

Méthodologie

Figure 7 : Evolution de la vitesse de perte de masse (MLR) en fonction du temps à un flux de 50 kW.m⁻² et une concentration d'oxygène de 21%vol d'une mousse Polyisocyanurate

NSTITUT

Méthodologie

Figure 8 : Evolution de la vitesse de perte de masse (MLR) en fonction du temps à un flux de 50 kW.m⁻² et une concentration d'oxygène de 0%vol d'une mousse Polyisocyanurate

NSTITUT

Méthodologie

Figure 9 : Evolution de la vitesse de perte de masse (MLR) en fonction du temps à un flux de 35 kW.m⁻² et une concentration d'oxygène de 5%vol d'une mousse Polyisocyanurate

NSTITUT

Méthodologie

Figure 10 : Evolution de la vitesse de perte de masse (MLR) en fonction du temps à un flux de 20 kW.m⁻² et une concentration d'oxygène de 10%vol d'une mousse Polyisocyanurate

NSTITUT

Méthodologie

Figure 11 : Evolution de la vitesse de perte de masse (MLR) en fonction du temps à un flux de 40 kW.m⁻² et une concentration d'oxygène de 18%vol d'une mousse Polyisocyanurate

Validation

- La méthodologie de surface de réponse est validée à l'aide d'une somme des écarts quadratiques
 - Les points déterminés numériquement font l'objet d'une comparaison avec les points expérimentaux (15 points de référence)
 - > |Valeur référence-Valeur modèle|²
- L'adéquation des courbes expérimentales et numériques est déterminée par la méthode d'Hilbert

	Méthode utilisée	Modèle ordre 2	Modèle ordre 3	Modèle ordre 4
Erreur relative	Euclidienne	1,20%	0,20%	-2,30%
Cos Téta	Sécante	0,991	0,996	0,849

Tableau 1 : Présentation de l'erreur relative et du déphasage des courbes numériques, basées sur des surfaces de différents ordres polynomiaux, aux courbes expérimentales selon la méthode de Hilbert

Perspectives

NSTITU Développement d'une méthodologie prédictive de la dégradation thermique de matériaux solides en tunnels routiers F. Hermouet – T. Rogaume – E. Guillaume F. Richard – X. Ponticq Merci de votre attention

Institut P' • UPR CNRS 3346 ENSMA• Téléport 2 BP 40109 F86961 FUTUROSCOPE CHASSENEUIL Cedex

