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Equivalence between fire and densimetric plumes
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Equivalence between fire and densimetric plumes
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* The plume’s dynamic is described in terms of integral quantities:
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Adimensional groups
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PIV set-up
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Source conditions

3 different test cases with increasing Reynolds number

At the source, the plumes are pure (I'=1 ) and non-Boussinesq (R=0.2).

The helium molar fraction in the mixture is yy,=0.93

Plume 1 Plume 2 Plume3
Re 260 450 820
r 1 1 1

O/ gt 0.2 0.2 0.2

Source diameter D[cm] 3.5 5 7.5

Exit velocity U[m/s] 0.82 0.98 1.2
Image field height 44.6 31.2 20.8
Number of recorded images 1400 1400 1400
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Mean vertical velocity
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Turbulent Kinetic Energy
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Turbulent Kinetic Energy
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Characteristic scales

20 7 20 20
_ —e—R6260 —9—R€260
) —EI—R645O +R645()
15¢ 15t Regop 15} Regao |
=10 10 =10
N N [\
5t —e— Reaeo |- 5t 5t
—=— Reys
Regy
0 0 0
0 2 4 6 8 0 1 2 3 0 2
'rm/rs wm/ws
o9 M FQ?
m = W1/2 Wy, = — '=K—
Q M2

= Plume necking near the source, then linear spreading.

= Strong acceleration near the source, the plumes become forced and return
asymptotically to the pure plume condition.
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Entrainment coefficient

= Asshown in Viggiano et. al 2017 and Salizzoni at al. 20 7
2022, for non-Boussinesq jets, Reynolds statistics —— Reago
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Entrainment coefficient
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Entrainment Relation
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Entrainment comparison
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= Good agreement between ay and « after 1075

* The major discrepancies are in the near-source region, where density
differences are relevant.
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Conclusions and Perspectives

= PIV measurements on highly buoyant, pure plumes with low Reynolds
numbers were carried out. Experimental analysis of these plumes is not
present in the literature.

= The entrainment coefficient a is computed in two different ways with good
agreement between the two estimations.

= DPerspectives: repetition of the experiments with simultaneous
concentration and velocity measurements. Repetition of the experiments
with a fully turbulent condition at the source.
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Possible fully turbulent condition at the source

Source diameter D[cm| Exit velocity Um/s| Re T' ps/pams He volume flux[m?/s]
15 1.69 2300 1 0.2 0.0279

= With laboratory instruments , the maximum helium volume flux at the source is
0.0083[m3/s]

= The helium kinematic viscosity is larger than air one: :}}H <=77
awr

= To have an image field of 10 diameters, an image heigth of 1.5 m is required.
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Pm reconstruction

= Reconstruction of the characteristic density scale relyng on the entrainment

coefficient .
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Governing equations

Equations for non-Boussinesq plumes
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Equations for Boussinesq plumes
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Governing equations

Profile coefficients with Reynolds statistics
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