

Dynamics and entrainment of plumes induced by fire sources

Stefano Lanzini, M. Marro, M. Creyssels, P. Salizzoni

Laboratoire de Mécanique des Fluides et d'Acoustique - UMR 5509

Contents

- Problem definition
- Experimental set-up
- Velocity field statistics
- Entrainment estimation
- Conclusions

Visualization of the experimental plume

Equivalence between fire and densimetric plumes

 $\dot{H} = Q_s C_p \rho_s (T_s - T_{amb})$

Equivalence between fire and densimetric plumes

 $\dot{H} = Q_s C_p \rho_s (T_s - T_{amb})$

 Assuming smoke acts as a perfect gas:

$$F = \frac{g}{\rho_{amb}T_{amb}C_p}\dot{H}$$

• The plume's dynamic is described in terms of integral quantities:

$$Q(z) \equiv 2 \int_0^\infty \bar{w} r dr \quad G(z) \equiv 2 \int_0^\infty \bar{\rho} \bar{w} r dr \quad M(z) \equiv 2 \int_0^\infty \bar{w}^2 r dr \quad F(z) \equiv 2 \int_0^\infty \frac{g(\rho_{amb} - \bar{\rho})}{\rho_{amb}} \bar{w} r dr$$

$$r_m(z) = \frac{Q}{M^{1/2}} \qquad w_m(z) = \frac{M}{Q} \qquad \rho_m(z) = \frac{G}{Q}$$

GDRFeux, December 2022

Adimensional groups

- $\Gamma = 0$ Pure jet $\Gamma = K \frac{FQ^2}{M^{5/2}}$ Scaled Richardson number : $\Gamma = 1$ Pure Plume R > 0.8Boussineq $R = \frac{\rho_s}{\rho_s}$ Density Ratio: ρ_{amb} R < 0.8Non Boussineq $Re = \frac{2M_S^{1/2}}{2M_S^{1/2}}$ Reynolds number:
 - GDRFeux, December 2022

PIV set-up

Source conditions

- 3 different test cases with **increasing** Reynolds number
- At the source, the plumes are **pure** (Γ=1) and non-Boussinesq (R=0.2).
- The helium molar fraction in the mixture is $\chi_{He}=0.93$

	Plume 1	Plume 2	Plume3
Re	260	450	820
Γ	1	1	1
$ ho_s/ ho_{amb}$	0.2	0.2	0.2
Source diameter <i>D</i> [<i>cm</i>]	3.5	5	7.5
Exit velocity $U[m/s]$	0.82	0.98	1.2
Image field height	44.6	31.2	20.8
Number of recorded images	1400	1400	1400

Mean vertical velocity

1

 r/r_m

*Re*₂₆₀

 $\mathbf{2}$

0

0

Turbulent Kinetic Energy

Turbulent Kinetic Energy

Characteristic scales

- Plume *necking* near the source, then linear spreading.
- Strong acceleration near the source, the plumes become *forced* and return asymptotically to the *pure plume* condition.

Entrainment coefficient

• As shown in *Viggiano et. al 2017* and *Salizzoni at al.* 2022, for non-Boussinesq jets, Reynolds statistics (\bar{x}) are equivalent to Favre statistics $(\tilde{x} = \frac{\bar{\rho}\bar{x}}{\bar{\rho}})$.

$$[r\bar{u}]_0^{\infty} + \int_0^{\infty} \frac{\partial}{\partial z} (\bar{w}) r dr = 0$$

$$\alpha r_m w_m = -r_\infty u_\infty \qquad \qquad \alpha = \frac{dQ}{dz} \frac{1}{2r_m w_m}$$

Entrainment coefficient

• As shown in *Viggiano et. al 2017* and *Salizzoni at al.* 2022, for non-Boussinesq jets, Reynolds statistics (\bar{x}) are equivalent to Favre statistics $(\tilde{x} = \frac{\bar{\rho}\bar{x}}{\bar{\rho}})$.

$$[r\bar{u}]_0^{\infty} + \int_0^{\infty} \frac{\partial}{\partial z} (\bar{w}) r dr = 0$$

$$\alpha r_m w_m = -r_\infty u_\infty$$

$$\alpha = \frac{dQ}{dz} \frac{1}{2r_m w_m}$$

Plugging the α value in the mass conservation equation, it's possible to reconstruct the characteristic density ratio $R = \frac{\rho_m}{\rho_{amb}}$.

Entrainment Relation

Ex. Turbulent production terms

$$\delta_g = \delta_m + \delta_f + \delta_p = \frac{4}{w_m^3 r_m} \int_0^\infty \left(\frac{\overline{u'w'}}{dr} + \overline{w'w'} \frac{d\overline{w}}{dz} + \overline{p} \frac{d\overline{w}}{dz} \right) r dr$$

GDRFeux, December 2022

Entrainment comparison

- Good agreement between α_E and α after $10r_s$
- The major discrepancies are in the near-source region, where density differences are relevant.

Conclusions and Perspectives

- PIV measurements on highly buoyant, pure plumes with low Reynolds numbers were carried out. Experimental analysis of these plumes is not present in the literature.
- The entrainment coefficient *α* is computed in two different ways with good agreement between the two estimations.
- Perspectives: repetition of the experiments with simultaneous concentration and velocity measurements. Repetition of the experiments with a fully turbulent condition at the source.

Conclusions and Perspectives

- PIV measurements on highly buoyant, pure plumes with low Reynolds number were carried out. Experimental analysis of these plumes is not present in the literature.
- The entrainment coefficient *α* is computed in two different ways with good agreement between the two estimations.
- Perspectives: repetition of the experiments with simultaneous concentration and velocity measurements. Repetition of the experiments with a fully turbulent condition at the source.

THANK YOU FOR THE ATTENTION

Possible fully turbulent condition at the source

Source diameter $D[cm]$	Exit velocity $U[m/s]$	Re	Γ	$ ho_s/ ho_{amb}$	He volume $\operatorname{flux}[m^3/s]$
15	1.69	2300	1	0.2	0.0279

- With laboratory instruments , the maximum helium volume flux at the source is $0.0083[m^3/s]$
- The helium kinematic viscosity is larger than air one: $\frac{v_{He}}{v_{air}} = 7.7$
- To have an image field of 10 diameters, an image heigth of 1.5 m is required.

ρ_m reconstruction

Reconstruction of the characteristic density scale relyng on the entrainment coefficient .

Governing equations

Equations for non-Boussinesq plumes

$$\frac{1}{r}\frac{\partial(r\overline{\rho}\widetilde{u})}{\partial r} + \frac{\partial\overline{\rho}\widetilde{w}}{\partial z} = 0$$
$$\frac{1}{r}\frac{\partial}{\partial r}(r(\overline{\rho}\widetilde{u}\widetilde{w} + r\overline{\rho}\widetilde{u''w''}) + \frac{\partial}{\partial z}(\overline{\rho}\widetilde{w}^2 + \overline{\rho}\widetilde{w''^2}) = -\frac{\partial\overline{p}}{\partial z} + \rho_a\overline{b}$$
$$\frac{1}{r}\frac{\partial}{\partial r}(r\widetilde{u}\ \overline{b} + r\widetilde{u''b''}) + \frac{\partial}{\partial z}(\widetilde{w}\ \overline{b} + \widetilde{w''b''}) = 0$$

Equations for Boussinesq plumes

$$\frac{1}{r}\frac{\partial(r\overline{u})}{\partial r} + \frac{\partial\overline{w}}{\partial z} = 0$$
$$\frac{1}{r}\frac{\partial}{\partial r}(r\overline{u}\ \overline{w} + r\overline{u'w'}) + \frac{\partial}{\partial z}(\overline{w}^2 + \overline{w'^2}) = -\frac{\partial\overline{p}}{\partial z} + \overline{b}$$
$$\frac{1}{r}\frac{\partial}{\partial r}(r\overline{u}\ \overline{b} + r\overline{u'b'}) + \frac{\partial}{\partial z}(\overline{w}\ \overline{b} + \overline{w'b'}) = -N^2\overline{w}$$

GDRFeux, December 2022

Governing equations

Profile coefficients with Reynolds statistics

$$\begin{split} \beta_m &\equiv \frac{M}{w_m^2 r_m^2} & \beta_f \equiv \frac{2}{w_m^2 r_m^2} \int_0^\infty \overline{w'^2} \, dr & \beta_p \equiv \frac{2}{w_m^2 r_m^2} \int_0^\infty \overline{p} r \, dr \\ \gamma_m &\equiv \frac{2}{w_m^3 r_m^2} \int_0^\infty \overline{w}^3 r \, dr & \gamma_f \equiv \frac{4}{w_m^3 r_m^2} \int_0^\infty \overline{w} \, \overline{w'^2} r \, dr & \gamma_p \equiv \frac{4}{w_m^3 r_m^2} \int_0^\infty \overline{w} \, \overline{p} r \, dr \\ \delta_m &\equiv \frac{4}{w_m^3 r_m} \int_0^\infty \overline{w' u'} \frac{d\overline{w}}{dr} r \, dr & \delta_f \equiv \frac{4}{w_m^3 r_m} \int_0^\infty \overline{w'^2} \frac{d\overline{w}}{dz} r \, dr & \delta_p \equiv \frac{4}{w_m^3 r_m} \int_0^\infty \overline{p} \frac{d\overline{w}}{dz} r \, dr \\ \theta_m &\equiv \frac{F}{w_m b_m r_m^2} & \theta_f \equiv \frac{2}{w_m b_m r_m^2} \int_0^\infty \overline{w' b'} r \, dr \end{split}$$

Integral equations

Farfield Solutions

$$\frac{dQ}{dz} = 2\alpha M^{\frac{1}{2}}$$
$$\frac{d}{dz}(\beta_g M) = \frac{FQ}{\theta_m M}$$
$$\frac{d}{dz}(\frac{\theta_g}{\theta_m}F) = 0$$

	Jet	Plume
Г	0	1
r_m	$2\alpha_j z$	$\frac{6}{5}\alpha_p z$
w_m	$\frac{M_0^{\frac{1}{2}}}{2\alpha_j}z^{-1}$	$\frac{5}{6\alpha_p} \left(\frac{9}{10} \frac{\alpha_p}{\theta_m \beta_g} F_0\right)^{\frac{1}{3}} z^{-\frac{1}{3}}$
b_m	$\frac{F_0}{2\alpha_j\theta_m}M_0^{-\frac{1}{2}}z^{-1}$	$\frac{5F_0}{9\alpha_p\theta_m} \left(\frac{9}{10}\frac{\alpha_p}{\theta_m\beta_g}F_0\right)^{\frac{1}{3}} z^{-\frac{5}{3}}$

GDRFeux, December 2022