Analyse des profils de vitesse et temperature dans une flame de paroi verticale

Rouen

Andres VALENCIA Bertrand LECORDIER <u>Alexis COPPALLE</u> coppalle@coria.fr

INSA

Rencontre GFC / GdR Feux 6-7 Décembre 2018 1/14

Introduction

===>This work is an experimental study of a canonical case of turbulent wall fire

Introduction

- o <u>The reactive boundary layer</u>
 - the laminar boundary layer diffusion flame: a classic and academic problem

forced flow configuration: Analytical Emmon's solution (1956) (non-spreading; constant wall temperature; no thermal radiation)

buoyant (upward) configuration:

F. J. Kosdon, F. A. Williams & C. Buman (1969) S. Kim, J. De Ris & F. William Kroesser (1971).

Turbulent Wall Fires

Large eddy simulation of a non spreading wall fire (porous burners)

Ren, Wang, Vilfayeau, Trouvé comb & flame (2016)

==> There are only a few studies for which experimental values T, V are available

Re Ris,-7th IAFSS conference , (2002)

the burning surface: a porous burner

T. Ahmad and G.M. Faeth. 17th Symp Comb

The burning surface: a

INSA

51-305 mm high wicks soaked with methanol, ethanol or 1-propand

There is a need for T and V experimental data for turbulent wall fires

Rencontre GFC / GdR Feux 6-7 Décem 4/14

HEAT TRANSFER PLATE

SINTERED BRONZE

Dimensions in mn

m"ha

m"hna

Free stream

velocity *u*∞

Experimental setup: burner

===> A stationary turbulent flame of 1 m height

References : - Hebert, Coppalle, Talbaut, Proc. Combust. (2013) - Valencia *, Talbaut, Yon, Godard, Gobin, Coppalle Proc. Combust. (2017)

Rencontre GFC / GdR Feux 6-7 Décembre 2018 5/14

Experimental setup: PIV

			_			
$W_{1P} pixel^2$	$W_{2P} pixel^2$	$\mathbf{r}\mathbf{e}\mathbf{couvrement}$	n_{2p}	R	Résolution	Vitesse
- mm ²	- mm ²			picel	finale mm^2	minimale
						mesurable
						cm/s
64x64 -	28x28 -	50 %	10	0,05	1x1	6
4,5x4,5	1,9x1,9					
5	$W_{1P} pixel^{2}$ - mm^{2} 64x64 - 4,5x4,5		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccc} s & W_{1P} \ pixel^2 \\ - \ mm^2 \\ \end{array} \begin{array}{c cccc} W_{2P} \ pixel^2 \\ - \ mm^2 \\ \end{array} \begin{array}{c ccccc} recouvrement \\ - \ mm^2 \\ \end{array} \begin{array}{c ccccccc} recouvrement \\ - \ mm^2 \\ \end{array} \begin{array}{c cccccccccccccc} n_{2p} \\ \hline n_{2p} \\ \end{array} \end{array} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

INSA

Normandie Univers

Rencontre GFC / GdR Feux 6-7 Décembre 2018 6/14

Experimental setup: PIV

• **Soot particles**→ spurious signal for the PIV image correlation

Trois injection points:

 \rightarrow **Two injectors**, at y = 1 cm from the wall and under the botom of the burner

→Injection through the ignition gas line to increase the seeding close to the wall of the burner

INSA

Particle Seeding system

> Injection velocity ZrO_2/air $\rightarrow 2 injectors \sim 6 cm/s (\sim 15 cm^3/s)$

Experimental setup: TC and heat flux sensor

Results: mean velocities

The **vertical speed increases with height** since the buoyancy forces are enhanced by the continuous heat released by the flame

INSA

DE ROUEN

The **thickness of the boundary layer increases with height** due to the mixing of the flame with the air.

Rencontre GFC / GdR Feux 6-7 Décembre 2018 8/14

Results: Analysis of the boundary layer

3 zones :

Close to the wall: 0 – 4 mm: strong increase of the velocity More or less linear variation

Maximum velocity : 4 mm - 1cm :

DE ROUEN

INSA

Far from the wall: > 1cm decrease of the velocity Due to mixing with air

V, Z Vertical U, Y, horizontal

Rencontre GFC / GdR Feux 6-7 Décembre 2018 12/14

Results: Analysis of the boundary layer

at 4 different heights in the flame (17, 20, 25,5 et 28 cm).

Average temperature Tfl= 1200K ; x=25 cm v (20°C,1 atm) = 15 × 10–6 m2/s $Gr = \frac{g x^3 (Tfl - T\infty)}{v_{\infty}^2 T\infty} = 2 \ 10^9$

Average vertical velocity

Conclusion:

- The temperature and V velocity profiles look alike

- for z>20cm: Tp max does not change while Vmax increase with the height

Rencontre GFC / GdR Feux 6-7 Décembre 2018 8/14

Results: Analysis of the boundary layer

similarity for vertical velocity profile

Laminar boundary layer

Rencontre GFC / GdR Feux 6-7 Décembre 2018 12/14

z = 28 cm z = 25.5 cm

z = 20 cm z = 17 cm

Z cm

0,3

HOLLING AND H. HERWIG, JFM 2005 Analysis of the convective BL on hot walls

théorie asymptotique:

$$Gr = \frac{g x^3 (Tfl - T\infty)}{v_{\infty}^2 T\infty} = \infty \quad (> 10^{10})$$

Dans la couche limite il y a

une couche interne (inner) ou la viscosité a une grande influence et une couche externe (outer) ou la turbulence est importante

(schema similaire à celui de la couche limite avec une convection forcée)

Dans la couche interne: Les deux modes de transferts, moleculaire et turbulent, sont présents. Dans la couche externe, qui est complétement turbulente: transport par les flux turbulents

Rencontre GFC / GdR Feux 6-7 Décembre 2018

Profils similaires pour la Tp et la vitesse verticale

Mesures simultanées des suies et de la vitesse de l'écoulement

Exemples de poches de suie générées dans la flamme en configuration de paroi verticale. (Valencia Int Symp Comb 2017

Conclusion:

La zone de combustion > 3-4 mm/ paroi

Fraction volumique maximale *fvmax* par rapport à la position *y* du centroïde des poches de suie.

dR Feux 6-7 Décembre 2018 6/14

Mesures PIV avec un zoom

$\Delta t \ \mu s$	$W_{1P} pixel^2$	$W_{2P} pixel^2$	Recouvrement	n_{2p}	R	Résolution	Vitesse
	- mm ²	- mm ²			pixel	finale mm^2	minimale
							cm/s
400	64x256 -	28x28 -	50 %	10	0,05	0,3x0,3	1
	1,4x5,6	0,6x0,6					

Normandie Univer

Rencontre GFC / GdR Feux 6-7 Décembre 2018 6/14

DE **ROUEN**

INSA

CO

Mesures PIV avec un zoom

Rencontre GFC / GdR Feux 6-7 Décembre 2018 6/14

Mesures PIV avec un zoom

Conclusions

INSA

Dans le cas d'une flamme de paroi (40 cm de hauteur): Les mesures de température et de vitesse montrent que

> Le maximum de vitesse verticale est de l'ordre de V= 2-3m/s

avec de grandes fluctuations de vitesse horizontale, rmsU/Umax= 300%

- Les profils des vitesses verticales V(y) et des temperatures T(y) sont très similaires mais pour z > 20cm : la temperature n'augmente plus avec la hauteur
 - Près de la paroi, dans la zone interne, il est raisonable de penser que le dégagement de chaleur est négligeable (y< 4mm)

===> La similitude observée pour les CL non réactivre peut s'appliquer il existe des profils similaires pour la vitesse verticale

$$\mathbf{V} = \frac{\tau_{\mathbf{w}}}{\mu}y - \frac{1}{2!}\frac{g\beta\Delta T_{\mathbf{w}}}{v}y^2 + \frac{1}{3!}\frac{g\beta q_{\mathbf{w}}}{\lambda v}y^3$$

- ➤ Analyse à poursuivre pour la temperature : T⁺=y⁺ ?
- Ensuite ces résultats devront être analysés afin de verifier la validité des lois de paroi utile pour la CFD dans le cas d'une paroi reactive.

Rencontre GFC / GdR Feux 6-7 Décembre 2018 ^{13/14}