

Chemistry reduction for combustion simulations

Benoît Fiorina

CentraleSupélec Laboratoire EM2C-CNRS <u>benoit.fiorina@centralesupelec.fr</u>

Environmental impact of combustion

CO₂

Directly linked to hydrocarbon consumption

- related to the overall system efficiency
- weakly sensible to the combustion chamber design

Unburnt hydrocarbons (HC) Carbon monoxide (CO) Nitrogen oxides (NOx) Sulfur oxides (SOx) Particles...

Combustion challenge

Dangerous in small quantities (ppm to few hundred of ppm) • very sensible to the combustion chamber design

Temperature control is a key to control pollutant emissions

Figure 4. Influence of flame temperature on CO and NO_x emission (From Lefebvre and Ballal, 2010)

Order of magnitude of detailed chemical mechanisms sizes

Fuel/Oxidizer	Number of species	Number of reactions
H ₂ /Air	10	50
CH4/Air	100	500
Heavy hydrocarbons/ Air (Kerosene, gasoil,)	1000	5000

TABLE II

Propane-Air Reaction Mechanism Rate Coefficients in the Form $k_f = AT^{\beta} \exp(-E/U)$ Units are moles, cubic centimeters, seconds, Kelvins and calories/mole.

3 183

Ξ TABLE II (continued)

 \geq 1

Propane-Air Reaction Mechanism Rate Coefficients in the Form $k_f = AT^{\beta} \exp(-E/RT)$. Units are moles, cubic centimeters, seconds, Kelvins and calories/mole.

	REACTION	A	β	E						
1.	$O_2 + H \rightleftharpoons OH + O$	2.000E14	0.0	16820.	×. –		REACTION	A	β	E
2.	$H_2 + O \rightleftharpoons OH + H$	5.060E04	2.67	6290.	· •		<u>an</u>	4.0001510		
3.	$H_2 + OH \rightleftharpoons H_2O + H$	1.000E08	1.6	3300.		33.	$CH_2 + H \rightleftharpoons CH + H_2$	4.000E13	0.0	0.
4. 5	$OH + OH \rightleftharpoons H_2O + O$	1.500E09	1.14	100.	A North	34.	$CH_2 + O \rightarrow CO + H + H$	8.000E13	0.0	0.
о. 6	$H + OH + M' \rightleftharpoons H_2 O + M'$	2 200E22	-1.0	0.	3	35.	$CH_2 + O_2 \rightarrow CO + OH + H$	6.500E12	0.0	1500.
7.	$0 + 0 + M' \rightleftharpoons 0_2 + M'$	2.900E17	-1.0	0.	1. S.	36.	$CH_2 + O_2 \rightarrow CO_2 + H + H$	6.500E12	0.0	1500
8.	$H + O_2 + M' \rightleftharpoons HO_2 + M'$	2.300E18	-0.8	0.		37.	$CH_2O + H \rightleftharpoons CHO + H_2$	2.500E13	00	4000.
9.	$HO_2 + H \rightleftharpoons OH + OH$	1.500E14	0.0	1000.		38.	$CH_2O + O \rightleftharpoons CHO + OH$	3.500E13	0.0	3490.
10.	$HO_2 + H \rightleftharpoons H_2 + O_2$	2.500E13	0.0	690.	-	39.	$CH_2O + OH \rightleftharpoons CHO + H_2O$	3.000E13	0.0	1200
11.	$HO_2 + H \rightleftharpoons H_2O + O$	3.000E13	0.0	1720.		40.	$CH_2O + HO_2 \rightleftharpoons CHO + H_2O_2$	1.000E12	0.0	8000
12.	$HO_2 + O \rightleftharpoons OH + O_2$	1.800E13	0.0	-400.		41.	$CH_2O + CH_3 \rightleftharpoons CHO + CH_4$	1.000E11	0.0	6100
13.	$HO_2 + OH \rightleftharpoons H_2O + O_2$	6.000E13	0.0	0.	-	42.	$CH_2O + M' \rightleftharpoons CHO + H + M'$	1.400E17	0.0	76550.
14.	$HU_2 + HU_2 \rightarrow H_2U_2 + U_2$ $OH + OH + M' \Rightarrow H_2O_2 + M'$	2.000E11 3.256E22	-2.0	-1240.		43.	$CH_3 + H \rightleftharpoons CH_2 + H_2$	1.800E14	0.0	15070.
16.	$H_2O_2 + H \rightleftharpoons H_2 + HO_2$	1.700E12	0.0	3750.		44.	$CH_3 + O \rightleftharpoons CH_2O + H$	7.000E13	0.0	0.
17.	$H_2O_2 + H \rightleftharpoons H_2O + OH$	1.000E13	0.0	3590.		45.	$CH_3 + OH \rightarrow CH_2O + H + H$	9.000E14	0.0	15500.
18.	$H_2O_2 + O \rightleftharpoons OH + HO_2$	2.800E13	0.0	6410.		46.	$CH_3 + OH \rightarrow CH_2O + H_2$	8.000E12	0.0	0.
19.	$H_2O_2 + OH \rightleftharpoons H_2O + HO_2$	5.400E12	0.0	1000.		47.	$CH_3 + O_2 \rightarrow CH_2O + H + O$	1.500E13	0.0	28710.
20.	$CO + OH \rightleftharpoons CO_2 + H$	4.400E06	1.5	-740.		48.	$CH_2 + CH_2 \rightleftharpoons C_2H_6$	7.470E52	-11.9	19190.
21.	$CO + HO_2 \rightleftharpoons CO_2 + OH$	1.500E14	0.0	23610		40	$CH \rightarrow CH_2 + H + M$	1.000E16	0.0	90910.
22.	C0 + 0						$C_2H_4 + H_2$	1.000E16	0.0	32060.
24.	CH + O						$C_0H_1 + H$	4.000E13	0.0	0
25.	$CH + O_2$				7	•	$-E_{O}$ $+CH_{0}$	2.200E04	3.0	8760
26.	CH + CC					-	$H + CH_{0}$	1 200E07	2.1	7630
27.	CH0+1		•			0	$B'I' = H_0 + CH_0$	1.600E06	21	2460
28.							$H_{12}O + OH_{3}$	4.000E12	0.0	10425
29.					_	-	$H_{2}O_{2} + O_{113}$	3 200 534	6.0	100450
31	CHO+C							1 200E34	-0.0	0545
32.	CHO + h = $co + u + m$	1.100217	0.0	10020.			$CH \rightarrow CH \rightarrow H$	2.000113	0.0	400
						50	$C_1 H + O_1 \leftarrow C_2 H_4 + H$	1.000E13	0.0	-400.
						09.	$C_2H + U = CU + CH$	1.000E13	0.0	U. 1970
α,	Species for a Propane-	Air Flame				60.	$C_2H + H_2 \rightleftharpoons C_2H_2 + H$	1.100E13	0.0	2870.
_						61.	$C_2H + O_2 \rightleftharpoons C_2HO + O$	5.000E13	0.0	1500.
		12	- ~			62.	$C_2HO + H \rightleftharpoons CH_2 + CO$	3.000E13	0.0	0.
	C_3H_8 $N * C_3H_7$ $I * C_3H_7$ C_4	$C_3H_6 C_2H_7$	$l_6 C_1$	$_{2}H_{5}$	3 182+	6 3 .	$C_2HO + O \rightarrow CO + CO + H$	1.000E14	0.0	0.
	$C_{13} \cup H \cup C_{2} H \downarrow C H_{3} \cup U \cup U_{3} \cup U \cup U \cup U_{3} \cup U \cup U \cup U_{3} \cup U \cup $	$CH_3 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2$		2H2 H		64.	$C_2H_2 + O \rightleftharpoons CH_2 + CO$	4.100E08	1.5	1700.
	CHO CH CO	$CO H_{2}$	о с), н	112 20		65.	$C_2H_2 + O \rightleftharpoons C_2HO + H$	4.300E14	0.0	1 2130 .
	H_2 HO_2 OH	H 02	4 14	õ		6 6 .	$C_2H_2 + OH \rightleftharpoons H_2O + C_2H$	1.000E13	0.0	7000.
	N ₂ NO N	- •				67.	$C_2H_2 + M \rightleftharpoons C_2H + H + M$	3.600E16	0.0	106700.
									-	

Propane-Air Reaction Mechanism Rate Coefficients in the Form $k_f = AT^{\beta} \exp(-E/RT)$

Units are moles, cubic centimeters, seconds, Kelvins and calories/mole.

_

3 lao

Propane-Air Reaction Mechanism Rate Coefficients in the Form $k_f = AT^{\beta} \exp(-E/RT)$. Units are moles, cubic centimeters, seconds, Kelvins and calories/mole.

	REACTION	Α	β	E
68.	$CH_2CO + H \rightleftharpoons CH_3 + CO$	7.000E12	0.0	3000.
6 9 .	$CH_2CO + O \rightleftharpoons CHO + CHO$	1.800E12	0.0	1340
70.	$CH_2CO + OH \rightleftharpoons CH_2O + CHO$	1.000E13	0.0	0
71.	$CH_2CO + M' \rightleftharpoons CH_2 + CO + M'$	1.000E16	0.0	5 933 0.
7 2 .	$C_2H_3 + H \rightleftharpoons H_2 + C_2H_2$	2.000 ± 13	0.0	0
7 3 .	$C_2H_3 + O \rightleftharpoons CH_2CO + H$	3.000 E13	0.0	0.
74.	$C_2H_3 + O_2 \rightarrow CH_2O + CHO$	1.500E12	0.0	0.
75.	$C_2H_3 \rightleftharpoons C_2H_2 + H$	1.600E32	-5.5	4 629 0.
76.	$CH_3CO + H \rightleftharpoons CH_2CO + H_2$	2.000E13	0.0	0.
77.	$CH_3CO + O \rightleftharpoons CH_3 + CO_2$	2.000E13	0.0	0.
78.	$CH_3CO + CH_3 \rightleftharpoons C_2H_6 + CO$	5.000 E13	0.0	0.
79.	$CH_3CO \rightleftharpoons CH_3 + CO$	2.300 ± 26	-5.0	17990.
80.	$C_2H_4 + H \rightleftharpoons C_2H_3 + H_2$	1.500E14	0.0	1 021 5.
81.	$C_2H_4 + O \rightarrow CH_3CO + H$	1.600 E09	1.2	740.
82.	$C_2H_4 + OH \rightleftharpoons C_2H_3 + H_2O$	3.000E13	0.0	3000.
8 3 .	$C_2H_4 + CH_3 \rightleftharpoons C_2H_3 + CH_4$	4.200E11	0.0	11120
84.	$C_2H_4 + M' \rightleftharpoons C_2H_2 + H_2 + M'$	2.500 ± 17	0.0	7 65 00.
8 5 .	$CH_3CHO + H \rightleftharpoons CH_3CO + H_2$	4.000 E13	0.0	4 21 0.
8 6 .	$CH_3CHO + O \rightleftharpoons CH_3CO + OH$	5.000E12	0.0	1790.
87.	$CH_3CHO + OH \rightleftharpoons CH_3CO + H_2O$	8.000E12	0.0	0.
88.	$CH_3CHO + HO_2 \rightleftharpoons CH_3CO + H_2O_2$	1.700 E12	0.0	10720.
8 9 .	$CH_3CHO + CH_2 \rightleftharpoons CH_3CO + CH_3$	2.500 ± 12	0.0	380 0.
9 0 .	$CH_3CHO + CH_3 \Rightarrow CH_3CO + CH_4$	8.500E10	0. 0	6000
91.	$CH_3CHO \rightleftharpoons CH_3 + CHO$	2.000 ± 15	0.0	7 919 0.
92	$C_2H_5 + H \rightleftharpoons CH_3 + CH_3$	3.000 E13	0.0	0.
93.	$C_2H_5 + O \rightleftharpoons CH_3CHO + H$	5.000 ± 13	0.0	0
94.	$C_2H_5 + O_2 \rightleftharpoons HO_2 + C_2H_4$	2.000 E12	0.0	500 0.
95.	$C_2H_5 + CH_3 \rightleftharpoons C_3H_8$	7.000E12	0.0	0
96.	$C_2H_5 + C_2H_5 \rightleftharpoons C_2H_4 + C_2H_6$	1.400 ± 12	0.0	0.
97.	$C_2H_5 \rightleftharpoons C_2H_4 + H$	1.300E19	-2.0	41480.
98.	$C_2H_6 + H \rightleftharpoons H_2 + C_2H_5$	5.400 ± 02	3.5	5 21 5.
9 9 .	$C_2H_6 + O \rightleftharpoons OH + C_2H_5$	3.000 ± 0.07	2.0	5120.
100.	$C_2H_6 + OH \rightleftharpoons H_2O + C_2H_5$	6.300E06	2.0	645.
101.	$C_2H_6 + HO_2 \rightleftharpoons H_2O_2 + C_2H_5$	6.000 E12	0.0	1 942 0.
102.	$C_2H_6 + CH_3 \rightleftharpoons C_2H_5 + CH_4$	5.500 E-01	4.0	8 30 0.
1 03 .	$C_2H_6 + CH_2 \rightleftharpoons CH_3 + C_2H_5$	2.200 E13	0.0	8 68 0.
104.	$C_2H_6 + CH \rightleftharpoons H + C_3H_6$	1.100E14	0.0	-260.

REACTION	A	β	E
105. $C_3H_8 + H \rightleftharpoons N * C_3H_7 + H_2$	1.300E14	0.0	9710
106. $C_3H_8 + H \rightleftharpoons I \ast C_3H_7 + H_2$	1.000E14	0.0	8 35 0.
107. $C_3H_8 + O \rightleftharpoons N * C_3H_7 + OH$	3.000E13	0.0	5765
108. $C_3H_8 + O \rightleftharpoons I * C_3H_7 + OH$	2.600E13	00	4470.
109. $C_3H_8 + OH \rightleftharpoons N * C_3H_7 + H_2O$	6.300E06	2.0	645.
110. $C_3H_8 + OH \Rightarrow I * C_3H_7 + H_2O$	1.200E08	1.46	-190.
111. $C_3H_8 + HO_2 \rightleftharpoons N * C_3H_7 + H_2O_2$	6.000E12	0.0	1 9420 .
112. $C_3H_8 + HO_2 \rightleftharpoons I * C_3H_7 + H_2O_2$	2.000E12	0.0	17000
113. $C_3H_8 + CH_3 \rightleftharpoons N * C_3H_7 + CH_4$	7.500E12	0.0	1 4950 .
114. $C_3H_8 + CH_3 \rightleftharpoons I * C_3H_7 + CH_4$	4.300E12	0.0	13280.
115. $N * C_3H_7 + H \rightleftharpoons C_3H_8$	2.000E13	0. 0	0.
116. $I * C_3H_7 + H \rightleftharpoons C_3H_8$	2.000E13	0.0	0.
117. $N * C_3H_7 + O_2 \rightleftharpoons C_3H_6 + HO_2$	1.000E12	0.0	5000.
118. $I * C_3H_7 + O_2 \rightleftharpoons C_3H_6 + HO_2$	1.000E12	0.0	2 990 .
119. $N * C_3 H_7 \rightleftharpoons C_3 H_6 + H$	1.000 ± 14	0. 0	3 73 40.
120. $I * C_3 H_7 \rightleftharpoons C_3 H_6 + H$	2.000 ± 14	0.0	3 873 0.
121. $N * C_3 H_7 \rightleftharpoons C_2 H_4 + C H_3$	3.000 ± 14	0.0	3 325 0.
122. $C_3H_6 + O \rightleftharpoons CH_3CO + CH_3$	5.000 E12	0.0	450.
123. $C_3H_6 + OH \rightarrow C_2H_2 + CH_3 + H_2O$	2.000E13	0 0	306 0.
124. $N_2 + O \rightleftharpoons N + NO$	0.136E15	0.0	7 640 0.
125. $N + O_2 \rightleftharpoons O + NO$	0.267 E11	0.72	7080.
126. $N + OH \rightleftharpoons H + NO$	0.280E14	0.0	0.

Third body efficiencies for M': $\alpha(O_2) = 0.4$, $\alpha(N_2) = 0.4$, $\alpha(CO) = 0.75$, $\alpha(CO_2) = 1.5$, $\alpha(H_2O) = 6.5$, $\alpha(C_3H8) = 3$.

 T,P,Y_k $\dot{\omega}_k$

Balance equations for CFD with detailed chemistry Too expensive for 3-D simulations: $au au_{ij}$ • number of Eqs ∂x_i $\frac{\partial \rho E}{\partial t} + \frac{\partial}{\partial x_i} \underbrace{ stiffness of reaction rates}_{\partial x_i} + \frac{\partial}{\partial x_j} (\tau_{ij} u_i)$ $\frac{\partial \rho Y_1}{\partial t} + \frac{\partial}{\partial x_i} (\rho u_i Y_1) = \frac{\partial}{\partial x_i} (\rho D_k \frac{\partial Y_1}{\partial x_i}) + \dot{\omega}_1$ $\frac{\partial \rho Y_k}{\partial t} + \frac{\partial}{\partial x_i} (\rho u_i Y_k) = \frac{\partial}{\partial x_i} (\rho D_k \frac{\partial Y_k}{\partial x_i}) + \dot{\omega}_k$ $\frac{\partial \rho Y_n}{\partial t} + \frac{\partial}{\partial x_i} (\rho u_i Y_n) = \frac{\partial}{\partial x_i} (\rho D_k \frac{\partial Y_n}{\partial x_i}) + \dot{\omega}_n$

Kinetic scheme reduction strategies for combustion modeling

B. Fiorina, D. Veynante and S. Candel. Modeling Combustion Chemistry in Large Eddy Simulation of Turbulent Flames. Flow Turb. and Combustion. Vol 94, Issue 1, pp3-42 (2015).

Kinetic scheme reduction strategies for combustion modeling

B. Fiorina, D. Veynante and S. Candel. Modeling Combustion Chemistry in Large Eddy Simulation of Turbulent Flames. Flow Turb. and Combustion. Vol 94, Issue 1, pp3-42 (2015).

Two main steps

Two main steps

From detailed to skeletal mechanism

- T. Turanyi. Reduction of large reaction mechanisms. New journal of chemistry. 1990
- Species can be classified into three classes
 - *important species*: essential to represent combustion processes
 - *necessary species*: required for the prediction of important species
 - redundant species: can be removed without affecting combustion phenomena
- Reactions are also classified as:
 - *important reactions*: essential to represent chemical pathway and kinetics rate
 - necessary reactions: essential to represent chemical pathway
 - redundant reactions: can be removed without altering production of important and necessary species

Steady premixed flame configuration: flame speed targeted

few sensitive reactions
quasi-independent of the fuel

Fig. 7.6. Sensitivity analysis for the flame velocity v_L in premixed stoichiometric CH₄- (black) and C₂H₆-air flames (white) at p = 1 bar, $T_u = 298$ K (Warnatz 1984).

Self - ignition case: **OH** concentration target

more sensitive reactions than steady cases

Fig. 7.7. Sensitivity analysis for the OH concentration in an igniting stoichiometric $C_{10}H_{22}$ -air mixture at p = 13 bar, $T_u = 800$ K (Nehse et al. 1996); the numbers in front of the formulae denote the location of the free electron or of O_2 in the chains, respectively. For clearness, no isomeric structures are given in Reactions (6)-(23).

Redundant species and reactions will depend on the configuration targeted ! Wide range of operating conditions targeted —> less redundant species and reactions

Elimination of redundant species and reactions Direct Relation Graph method (DRG)

T. Lu, C. Law, Proc. Combust. Inst. 30 (2005)

 measure of the coupling between two species that are directly related

$$r_{AB}^{\text{DRG}} \equiv \frac{\sum_{i=1,n_{\text{R}}} |\nu_{i,A}\omega_{i}\delta_{B}^{i}|}{\sum_{i=1,n_{\text{R}}} |\nu_{i,A}\omega_{i}|}$$

 $\omega_i = \omega_{f,i} - \omega_{b,i}$ $\delta_B^i = \begin{cases} 1, & \text{if the } i \text{ th reaction involves species } B \\ 0, & \text{otherwise.} \end{cases}$

- measure if A and B are directly related
- Target A: if $r_{AB}^{DRG} < \epsilon$ then B can be removed

T. Lu, C. Law, Proc. Combust. Inst. 30 (2005)

Fig. 1. A directed relation graph showing typical relations of the species.

Elimination of redundant species and reactions Direct Relation Graph with Error Propagation (DRGEP)

P. Pepiot-Desjardin and H. Pitsch. An efficient error-propagation-based reduction method for large chemical kinetic mechanisms. Comb & Flame (2008)

$$r_{AB,p} = \min_{1 < i < n-1} r_{S_i S_{i+1}}^*$$

$$r_{AB,p} = \prod_{1 < i < n-1} r_{S_i S_{i+1}}^*$$

$$r_{AD} = 0.04$$

$$r_{AB} = 0.05$$

$$B$$

$$r_{BC} = 0.05$$

$$r_{BC} = 0.05$$

$$r_{BC} = 0.05$$

$$r_{BC} = 0.05$$

Two main steps

Automatic ARC generation

Methods are successively applied and combined in practice

	Strategy I	Strategy II : YARC	Strategy III : KINALC		
	(Lu & Law, 2008 <i>a</i>)	(Pepiot, 2008)	(Turányi, 1990a)		
STEP I	$\mathrm{DRG}(\mathrm{X}/\mathrm{ASA})$	DRGEP	Jacobian investigations (remove species)		
		Chemical Lumping	PCA (remove reactions)		
STEP II	QSS via CSP pointers	QSS via LOI	QSS via error estimation (Turányi <i>et al.</i> , 1993)		
Examples	(Lu & Law, 2008a, b)	(Pepiot-Desjardins & Pitsch, 2008)	(Tomlin $et al., 1992$)		
	and more online: $(Lu, 2008)$	(Pepiot & Pitsch, 2008; Jaravel, 2016)	and more online: (Turányi, 1981)		

From Anne Felden PhD thesis (2017)

Kinetic scheme reduction strategies for combustion modeling

B. Fiorina, D. Veynante and S. Candel. Modeling Combustion Chemistry in Large Eddy Simulation of Turbulent Flames. Flow Turb. and Combustion. Vol 94, Issue 1, pp3-42 (2015).

Tabulated chemistry

B. Fiorina, D. Veynante and S. Candel. Modeling Combustion Chemistry in Large Eddy Simulation of Turbulent Flames. Flow Turb. and Combustion. Vol 94, Issue 1, pp3-42 (2015).

Thermochemical state

$$\begin{split} \varphi &= \mathcal{F}(p, T, Y_1, Y_2, \dots, Y_{n_{sp}}) \\ \varphi &= \mathcal{G}(p, h, Y_1, Y_2, \dots, Y_{n_{sp}}) \\ \varphi &= \mathcal{H}(\rho, e, Y_1, Y_2, \dots, Y_{n_{sp}}) \end{split}$$

$$\begin{aligned} \mathbf{red} &< n_{sp} \\ \varphi &= \mathcal{F}'(p, T, \psi_1, \psi_2, \dots, \psi_n) \\ \varphi &= \mathcal{G}'(p, h, \psi_1, \psi_2, \dots, \psi_n) \\ \varphi &= \mathcal{H}'(\rho, e, \psi_1, \psi_2, \dots, \psi_n) \\ \end{split}$$

Tabulated chemistry

B. Fiorina, D. Veynante and S. Candel. Modeling Combustion Chemistry in Large Eddy Simulation of Turbulent Flames. Flow Turb. and Combustion. Vol 94, Issue 1, pp3-42 (2015).

No analytical expression: defined in the discrete form of a database

$$\varphi = \mathcal{F}'(p, T, \psi_1, \psi_2, \dots, \psi_n)$$

$$\varphi = \mathcal{G}'(p, h, \psi_1, \psi_2, \dots, \psi_n)$$

$$\varphi = \mathcal{H}'(\rho, e, \psi_1, \psi_2, \dots, \psi_n)$$

 $< n_{sp}$

- Tabulate thermochemical states in a look-up table during a pre-processing step
- Key issues
 - identification of the reduced subspace
 - building up of the chemical table (or manifold)
 - size of the table

Tabulated chemistry ILDM method

Maas U. and Pope S. (1992) " Simplifying chemical-kinetics - Intrinsic Low-Dimensional Manifolds in composition space" in Combustion and Flame, 88-3-4, pp 239-264

Tabulated chemistry Flamelet-based methods

Physical approach: build up the chemical database from simple combustion elements computed with detailed chemistry

- Using non-premixed flamelets
 Flamelet model:
 Peters, N.: Prog. Energy Combustion. Sci. 10, 319 (1984)

 Flamelet Progress Variable (FPV):
 Pierce, C., Moin, P.: J. Fluid Mech. 504, 73 (2004)
- Using premixed flamelets

Flamelet Prolongation of ILDM (FPI):

Gicquel, O., Darabiha, N., Thévenin, D.: Proc. Combust. Inst. 28, 1901 (2000)

Flamelet Generated Manifold (FGM):

van Oijen, J.A., Lammers, F.A., de Goey, L.P.H.: Combust. Flame 127(3), 2124 (2001)

Using 0-D reactors

Tabulated Kinetic of Ignition:

Colin, O., da Cruz, A.P., Jay, S.: Proc. Combust. Inst. 30(2), 2649 (2005)

Anticipated by Bradley et al. Bradley al. Combust. Flame 71, 109 (1988)

from I-D laminar premixed Tabulated chemistry *Flamelet based methods* Partially premixed if on bustion modeling

- Tabalation direction istry from 1-D laminar premixed flaxmes (FRIOFGM) $z = \frac{Y_z - Y_{z_o}}{Y_{z_f} - Y_{z_o}}$ z = 0 z = 1
 - <u>Premixed flame</u> Progress variable c $c = \frac{Y_c - Y_{c_f}(Y_z)}{Y_{c_b}(Y_z) - Y_{c_f}(Y_z)} \xrightarrow{Oxidizer}{Burnt gases}$ c = 0 c = 1

Tabulated chemistry Example: FPI & FGM

COMPUTATION OF PREMIXED FLAMELETS IN PHYSICAL SPACE WITH DETAILED CHEMISTRY

1

REGATH Solver (N. Darabiha 1992) + GRI Mechanism (53 species, 323 reactions

COMPUTATION OF PREMIXED FLAMELETS IN PHYSICAL SPACE WITH DETAILED CHEMISTRY

REGATH Solver (N. Darabiha 1992) + GRI Mechanism (53 species, 323 reactions

MAPPING IN A LOOK UP TABLE OF N_C DIMENSIONS

T = f(c)

2

T = f(c)

1.00

2

MAPPING IN A LOOK UP TABLE OF N_C DIMENSIONS

MAPPING IN A LOOK UP TABLE OF Nc DIMENSIONS

0.25

0.50

c[-]

0.75

1.0

0

0.00

0.25

0.50

c[-]

0.75

1.00

0.002

0.000

0.00

2

0.01

0.00

0.00

0.25

0.50

c[-]

0.75

1.00

MAPPING IN A LOOK UP TABLE OF N_C DIMENSIONS

2

CFD COMPUTATION

3

 $\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i}(\rho u_i) = 0$ $\frac{\partial \rho u_j}{\partial t} + \frac{\partial}{\partial x_i} (\rho u_i u_j) = -\frac{\partial P}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_i} \qquad P/\rho = rT$ $\frac{\partial \rho E}{\partial t} + \frac{\partial}{\partial x_i} (\rho u_i E) = \dot{\omega}_T - \frac{\partial q_i}{\partial x_i} - \frac{\partial}{\partial x_i} (P u_i) + \frac{\partial}{\partial x_i} (\tau_{ij} u_i)$ $\frac{\partial \rho Y_1}{\partial t} + \frac{\partial}{\partial x_i} (\rho u_i Y_1) = \frac{\partial}{\partial x_i} (\rho D_k \frac{\partial Y_1}{\partial x_i}) + \dot{\omega}_1$ $\frac{\partial \rho Y_k}{\partial t} + \frac{\partial}{\partial x_i} (\rho u_i Y_k) = \frac{\partial}{\partial x_i} (\rho D_k \frac{\partial Y_k}{\partial x_i}) + \dot{\omega}_k$ $\frac{\partial \rho Y_n}{\partial t} + \frac{\partial}{\partial x_i} (\rho u_i Y_n) = \frac{\partial}{\partial x_i} (\rho D_k \frac{\partial Y_n}{\partial x_i}) + \dot{\omega}_n$

CFD COMPUTATION

3

Chemistry tabulation

- Chemistry tabulation is accurate and efficient
 - compare well with detailed chemistry solutions
 - dramatic decrease of dimensions
- But there is no universal solution for tabulation
 - depends on the flame regime: premixed, partially-premixed or non premixed
 - Number of coordinates increase with operating conditions: pressure, heat exchanges, dilution with burnt gases, initial temperature ...

Kinetic scheme reduction strategies for combustion modeling

B. Fiorina, D. Veynante and S. Candel. Modeling Combustion Chemistry in Large Eddy Simulation of Turbulent Flames. Flow Turb. and Combustion. Vol 94, Issue 1, pp3-42 (2015).

Global empirical chemistry

- 1) Selection of species and reactions
- 2) Optimization of reaction rate parameters to retrieve target flame properties

$$C_{n}H_{m} + {\binom{n}{2} + \frac{m}{4}}O_{2} = nCO + \frac{m}{2}H_{2}O$$

$$CO + 1/2O_{2} = CO_{2}.$$
Westbrook, C., Dryer, F.: Combust.
Sci. Technol. 27, 31 (1981)
$$KERO + 10O_{2} \Rightarrow 10CO + 10H_{2}O_{2}O_{2} \Rightarrow CO_{2}.$$

$$K_{f,1} = A_{1}f_{1}(\phi)e^{(-E_{a,1}/RT)}[KERO]^{n_{KERO}}[O_{2}]^{n_{C}},$$

$$k_{f,2} = A_{2}f_{2}(\phi)e^{(-E_{a,2}/RT)}[CO]^{n_{CO}}[O_{2}]^{n_{O_{2},2}},$$
B. Franzelli, E. Riber, M. Sanjosé, T. Poinsot. Comb & Flame (2010)

Global empirical chemistry Kerosen - Air combustion

- Flame speed is well retrieved
- not enough species to get the flame temperature in rich regions
- Pollutant are not captured ... CO is not CO

Virtual chemistry

1) building-up a reduced chemical mechanism from scratch

2) using virtual species and reactions whose chemical rate constants and thermo-chemical properties are optimized

M. Cailler, N. Darabiha, D. Veynante and B. Fiorina. Building-up virtual optimized mechanism for flame modeling. Proceeding of the Combustion Institute (2017)

Chemical modeling

Virtual optimized mechanisms architecture

- Virtual optimized chemistry approach relies on
 - The optimization of reaction rate parameters and virtual species physical properties
 - The use of sub-mechanisms for dedicated flame property prediction

Sub-mechanism for CO prediction

- Optimization of kinetic scheme and reaction rate parameters
 - Three-step mechanism

$$\alpha_F F + \alpha_{Ox} Ox \to \alpha CO + (1 - \alpha) V_1$$
$$F + V_1 \to F + CO$$
$$CO \leftrightarrow V_2$$

• Rate of progress:

$$q_{3} = A_{3}f_{3}(Y_{D}^{v}) \exp\left(\frac{-E_{a,3}}{RT}\right) [F]^{F_{F}^{3}} [Ox]^{F_{Ox}^{3}}$$

$$q_{4} = A_{4}f_{4}(Y_{D}^{v}) \exp\left(\frac{-E_{a,4}}{RT}\right) [F]^{F_{F}^{4}} [V_{1}]^{F_{V_{1}}^{4}}$$

$$q_{5} = A_{5}f_{5}(Y_{D}^{v}) \exp\left(\frac{-E_{a,5}}{RT}\right) \left([CO]^{F_{CO}^{5}} [V_{1}]^{F_{V_{1}}^{5}} - \frac{[CO]^{R_{CO}^{5}} [V_{1}]^{R_{V_{1}}^{5}}}{\exp\left(\frac{-\Delta G_{5}^{0}(Y_{D}^{v})}{RT}\right)} \right)$$
Pre-tabulated to capture Y_{CO} at equilibrium

M. Cailler, N. Darabiha and B. Fiorina. Virtual chemistry for pollutant emissions prediction (submitted)

Sub-mechanism for CO prediction

- Optimization of kinetic scheme and reaction rate parameters
 - Three-step mechanism

$$\alpha_F F + \alpha_{Ox} Ox \to \alpha CO + (1 - \alpha) V_1$$
$$F + V_1 \to F + CO$$
$$CO \leftrightarrow V_2$$

• Rate of progress:

$$q_{3} = A_{3}f_{3}\left(Y_{D}^{v}\right)\exp\left(\frac{-E_{a,3}}{RT}\right)\left[F\right]^{F_{F}^{3}}\left[Ox\right]^{F_{Ox}^{3}}$$

$$q_{4} = A_{4}f_{4}\left(Y_{D}^{v}\right)\exp\left(\frac{-E_{a,4}}{RT}\right)\left[F\right]^{F_{F}^{4}}\left[V_{1}\right]^{F_{V_{1}}^{4}}$$

$$q_{5} = A_{5}f_{5}\left(Y_{D}^{v}\right)\exp\left(\frac{-E_{a,5}}{RT}\right)\left(\left[CO\right]^{F_{CO}^{5}}\left[V_{1}\right]^{F_{V_{1}}^{5}} - \frac{\left[CO\right]^{R_{CO}^{5}}\left[V_{1}\right]^{R_{V_{1}}^{5}}}{\exp\left(\frac{-\Delta G_{5}^{0}\left(Y_{D}^{v}\right)}{RT}\right)}\right)$$
Pre-tabulated to capture Y_{CO} at equilibrium

• $A_i, E_{a,i}, F_{k,i}, f_4 \text{ and } f_5$ are optimized through an in-house genetic algorithm

M. Cailler, N. Darabiha and B. Fiorina. Virtual chemistry for pollutant emissions prediction (submitted) $^{\rm 43}$

Y_{co} **profiles: Reference library = {Premixed}**

Y_{co} profiles: Reference library = {Premixed + Diffusion}

Heavier fuels

Heavier fuels

REDUCED OR TABULATED OR OPTIMIZED ?

Conclusion

Tabulated chemistry

 \checkmark very efficient on canonical configuration

- less suitable to « complex » flame structure where many flame regimes are encountered
 - A single flamelet is non sufficient to build the table:
 - Which flamelet archetypes to tabulate ?
 - How to map a database with different archetypes?
 - New coordinates are needed. How to close the look-up table coordinates balance equations ?

Conclusion

Analytically Reduced Chemistry

- ✓ Progress have been made to automatize the generation of ARC mechanisms
- Massively computing facilities make possible their use in CFD
- still expensive as many species remains to be transported
- stiffness of reaction rates

Conclusion

Virtual Chemistry

 \checkmark Enables the prediction of pollutant with a few reactions

 \checkmark Size does not depends on the fuel

- mechanims and sub-mechanisms structure remains to be automatized
- intuitive identification of the degree of freedoms

Chemistry is reduced to compute turbulent flames

Preccinsta burner simulation with virtual chemistry (G. Maio PhD)

... a few examples

Joined comparative study, TNF 2012 and 2014

Research groups have developed their own computational strategies

UNIVERSITÄT

DUISBURG

- different turbulent combustion models
- different codes with different numerics
- different meshes
- different computational domains
- different phd students who run and analyse the computations

We cannot conclude on specific submodel perfomances with this exercice !

But aim is to illustrate the state of the art

B. Fiorina, R. Mercier, G. Kuenne, A. Ketelheun, A. Avdic, J. Janicka, D. Geyer, A. Dreizler, E. Alenius, C. Duwig, P. Trisjono, K. Kleinheinz, S. Kang, H. Pitsch, F. Proch, F. Cavallo Marincola, A. Kempf . Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion. Comb & Flame (2015)

TSFA: no shear layer / stratification

stratification zones

LDV measurements:

• Axial/radial velocity

Raman/Rayleigh measurements:

• T - Y_{O2} - Y_{CH4} - Y_{CO2} - Y_{H2O} - Y_{N2}

B. Böhm et al., Proc. Comb. Inst. (2010) F. Seffrin et al., Comb. & Flame 157. (2010)

Flame lifting due to heat losses at the burner lips

Turbulent	Chemistry	Kinetic	Flame resolution	Flame wrinkling	
Combustion model	modeling	scheme	management	model	
ATF-FGM	Tabulated chemistry	GRI3.0 Lewis number unity	Thickening	Charlette <i>et al.</i>	
(TUD)	(premixed flamelets)	[25]		[21]	
F-TACLES	Tabulated chemistry	Lindstedt	Filtering	Charlette <i>et al.</i>	
(EM2C)	(premixed flamelets)	[34]		[21]	
Coupled G-C	Tabulated chemistry	Peters & Rogg	Level-set	Pitsch	
(ITV)	(premixed flamelets)	[35]		[15]	
NCM	Semi-global	Jones & Lindstedt	Resolved	None	
(LUND)	scheme	[36]			
FSD	Flame speed	GRI3.0 Lewis number unity	None	Fureby	
(UDE)	tabulation	[25]	(see Sec. 2.6.2)	[27]	

4 « Tabulated chemistry »

1 « No turbulent combustion model »

between

LES

➡ Good prediction of the flame lift-off

In general a fair agreement has been observed between LES and experiments

B. Fiorina, R. Mercier, G. Kuenne, A. Ketelheun, A. Avdic, J. Janicka, D. Geyer, A. Dreizler, E. Alenius, C. Duwig, P. Trisjono, K. Kleinheinz, S. Kang, H. Pitsch, F. Proch, F. Cavallo Marincola, A. Kempf . Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion. Comb & Flame (2015)

Large Eddy Simulation (LES) of turbulent combustion

57

zone

Example of ARC in LES: SANDIA D Flame (PhD of T. Jaravel) No thickening: flame front resolution

0

Example of Virtual chemistry in LES: HERON combustor

(PhD of M. Cailler) Flame front is thickened by TFLES, Subgrid flame wrinkling is modeled

- High pressure test-rig HERON equipped with a Lean-Premixed injection system (Malbois, Proceedings of ASME Turbo expo, 2017)
- Designed to investigate the impact of pressure and equivalence ratio on the flame structure and polluant formation

Lagrangian particles colored by their diameter and gaseous kerosene mass fraction

Instantaneous field of temperature

59