Rencontre GDR FEUX/GFC 2018 Modélisation et expérimentations en combustion et incendies

Reconstruction 3D et résolue en temps du champ de température en face arrière d'un matériau composite soumis au feu

Gillian Leplat¹, Yves Le Sant², Philippe Reulet¹ & Thomas Batmalle¹

¹DMPE: Multi-Physics for Energetics Department ²DAAA: Aerodynamics, Aeroelasticity and Aeroacoustics Department

Outline

- Context: Fire Safety Science
- Experimental approach
 - FIRE facility
 - DIC code (FOLKI_D)
 - Lagrangian tracking in IR images
- Results
 - Metallic panel
 - Composite laminate
- Conclusion

Context: Fire Safety Science

Aviation safety regulation: burnthrough resistance of aircraft structures

Burnthrough test: what does it consist of ?

kerosene burner @ DGA Techniques Aéronautiques

// Aircraft with a passenger capacity of 20 or greater must be constructed so that they are burnthrough-resistant. This means that for a period of at least four minutes, flame penetration through materials from the lower half of the airplane fuselage into the cabin must be prevented. // FAR 25.856(b) [Amdt. 25-111, July 31th, 2003]

Context: Fire Safety Science

Fire behaviour of composite materials

Multi-physics problem with coupled phenomena

Friction due to surface

roughness

•

medium

ONERA

THE FRENCH AEROSPACE LAB

Accurate wall heat flux
 prediction

Experimental and numerical suite

whiet Modethec Codethec

ONERA CEDRE 🌲

ONERA ZEBULONZ

Experimental assessment of anisotropic thermal properties Laser-induced decomposition of charring materials

Fire-induced decomposition of charring materials Interaction of pyrolysis volatiles with flame dynamics

Electrical current-induced decomposition of charring materials Assessment of mechanical properties by fast volume heating

Multi-species pyrolysis finite volume numerical solver Heat & mass transfer within anisotropic charring porous materials

> Post-processing toolbox for kinetics and energetics analysis of decomposing composite materials

Multi-physics finite volume numerical solver for energetic multi-phase flow simulations

Multi-physics finite element numerical solver for materials and structures behaviour simulations

FIRE facility: Flame-wall Interaction Research Experiment

Understanding the fire behaviour of composite materials

Thermal response during fire-induced decomposition

FEATURES

- Test coupon size: 350 x 350mm
- Premixed air-propane burner Ø40mm
- Exposure time: automated moving burner
- Transient temperature maps:
 quantitative IR thermography on the back surface
- Displacement: **DIC** (stereoscopic cameras associated to a high power LED projector)
- Mass loss: high precision weighting
 module
- Flame dynamics: Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV)

Interaction between fire and materials

LDV measurement of flame dynamics

ONERA

THE FRENCH AEROSPACE LAB

Instrumentation

DIC vs. PIV

projected in the image,
 2x2D motion finds 3D point
 Initial shape: plane
 Final shape: deformed plane (3D)

Initial correlation finds 3D point 2x2D motion finds 3D point Initial shape: **3D shape** Final shape: **deformed 3D shape**

A brief overview of FOLKI_D

Initial shape

W=2108 x H=2109 type=CAfixImageFloat min=0.000000 max=0.999033

A brief overview of FOLKI_D

Final shape

W=2108 x H=2109 type=CAfixImageFloat min=0.000000 max=0.999033

A brief overview of FOLKI_D

Principle

FOLKI 1C field:

stereovision for the final shape

Minimizing

$$\sum_{m \in W(k)} (I_1(m) - I_2(m + u(k)))^2$$

Iterative process

$$\sum_{m \in W(k)} (I_1(m) - I_2(m + u(m) + du(k)))^2$$

FOLKI 1C field: stereovision for the initial shape

FOLKI 2C field: displacement

Camera calibration

IR:

DIC:

usual CB

may use same DIC CB

Lagrangian tracking in IR images

Results

Fire behaviour of materials

Metallic panel (3mm-thick INCO600)

physfire Office

ONERA

THE FRENCH AEROSPACE LAB

14

Composite laminate (8-ply T700GC/M21)

Ofre

THE FRENCH AEROSPACE LAB

FUTURE **SKY**

15

Results

Thermal effects on correlation

Conclusions

- Lagrangian tracking implemented
- Valuable results even with pyrolysis
- On-going and forthcoming improvements:
 - Using a natural texture for composite ?
 - High(er) illumination energy (LED) to increase the correlation
 - Angular emissivity correction
 - Thermal effects correction
 - Application on the exposed surface
 - Training period and PhD thesis proposed in 2019 !

THE FRENCH AEROSPACE LAB

